Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Front Immunol ; 14: 1122905, 2023.
Article En | MEDLINE | ID: mdl-36875120

Non-hematopoietic lymphoid stromal cells (LSC) maintain lymph node architecture and form niches allowing the migration, activation, and survival of immune cells. Depending on their localization in the lymph node, these cells display heterogeneous properties and secrete various factors supporting the different activities of the adaptive immune response. LSCs participate in the transport of antigen from the afferent lymph as well as in its delivery into the T and B cell zones and organize cell migration via niche-specific chemokines. While marginal reticular cells (MRC) are equipped for initial B-cell priming and T zone reticular cells (TRC) provide the matrix for T cell-dendritic cell interactions within the paracortex, germinal centers (GC) only form when both T- and B cells successfully interact at the T-B border and migrate within the B-cell follicle containing the follicular dendritic cell (FDC) network. Unlike most other LSCs, FDCs are capable of presenting antigen via complement receptors to B cells, which then differentiate within this niche and in proximity to T follicular helper (TFH) cells into memory and plasma cells. LSCs are also implicated in maintenance of peripheral immune tolerance. In mice, TRCs induce the alternative induction of regulatory T cells instead of TFH cells by presenting tissue-restricted self-antigens to naïve CD4 T cells via MHC-II expression. This review explores potential implications of our current knowledge of LSC populations regarding the pathogenesis of humoral immunodeficiency and autoimmunity in patients with autoimmune disorders or common variable immunodeficiency (CVID), the most common form of primary immunodeficiency in humans.


Autoimmune Diseases , Common Variable Immunodeficiency , Humans , Animals , Mice , Stromal Cells , B-Lymphocytes , Germinal Center , Plasma Cells
2.
Immunity ; 55(12): 2386-2404.e8, 2022 12 13.
Article En | MEDLINE | ID: mdl-36446385

The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co-existing autoimmunity. To investigate whether these mutations are the cause or consequence of CD8+ T cell clonal expansions and autoimmunity, we analyzed patients and mice with germline STAT3 GOF mutations. STAT3 GOF mutations drove the accumulation of effector CD8+ T cell clones highly expressing NKG2D, the receptor for stress-induced MHC-class-I-related molecules. This subset also expressed genes for granzymes, perforin, interferon-γ, and Ccl5/Rantes and required NKG2D and the IL-15/IL-2 receptor IL2RB for maximal accumulation. Leukocyte-restricted STAT3 GOF was sufficient and CD8+ T cells were essential for lethal pathology in mice. These results demonstrate that STAT3 GOF mutations cause effector CD8+ T cell oligoclonal accumulation and that these rogue cells contribute to autoimmune pathology, supporting the hypothesis that somatic mutations in leukemia/lymphoma driver genes contribute to autoimmune disease.


Autoimmune Diseases , Leukemia, Large Granular Lymphocytic , Animals , Mice , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , CD8-Positive T-Lymphocytes , Gain of Function Mutation , Leukemia, Large Granular Lymphocytic/genetics , Leukemia, Large Granular Lymphocytic/pathology , Mutation , NK Cell Lectin-Like Receptor Subfamily K/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
3.
Front Immunol ; 13: 959002, 2022.
Article En | MEDLINE | ID: mdl-36275744

Common variable immunodeficiency (CVID), characterized by recurrent infections, low serum class-switched immunoglobulin isotypes, and poor antigen-specific antibody responses, comprises a heterogeneous patient population in terms of clinical presentation and underlying etiology. The diagnosis is regularly associated with a severe decrease of germinal center (GC)-derived B-cell populations in peripheral blood. However, data from B-cell differentiation within GC is limited. We present a multiplex approach combining histology, flow cytometry, and B-cell receptor repertoire analysis of sorted GC B-cell populations allowing the modeling of distinct disturbances in GCs of three CVID patients. Our results reflect pathophysiological heterogeneity underlying the reduced circulating pool of post-GC memory B cells and plasmablasts in the three patients. In patient 1, quantitative and qualitative B-cell development in GCs is relatively normal. In patient 2, irregularly shaped GCs are associated with reduced somatic hypermutation (SHM), antigen selection, and class-switching, while in patient 3, high SHM, impaired antigen selection, and class-switching with large single clones imply increased re-cycling of cells within the irregularly shaped GCs. In the lymph nodes of patients 2 and 3, only limited numbers of memory B cells and plasma cells are formed. While reduced numbers of circulating post GC B cells are a general phenomenon in CVID, the integrated approach exemplified distinct defects during GC maturation ranging from near normal morphology and function to severe disturbances with different facets of impaired maturation of memory B cells and/or plasma cells. Integrated dissection of disturbed GC B-cell maturation by histology, flow cytometry, and BCR repertoire analysis contributes to unraveling defects in the essential steps during memory formation.


Common Variable Immunodeficiency , Humans , Germinal Center , B-Lymphocytes , Immunoglobulin Isotypes , Antigens , Receptors, Antigen, B-Cell/genetics
4.
Sci Immunol ; 7(73): eabq3277, 2022 07 22.
Article En | MEDLINE | ID: mdl-35867801

High-level expression of the transcription factor T-bet characterizes a phenotypically distinct murine B cell population known as "age-associated B cells" (ABCs). T-bet-deficient mice have reduced ABCs and impaired humoral immunity. We describe a patient with inherited T-bet deficiency and largely normal humoral immunity including intact somatic hypermutation, affinity maturation and memory B cell formation in vivo, and B cell differentiation into Ig-producing plasmablasts in vitro. Nevertheless, the patient exhibited skewed class switching to IgG1, IgG4, and IgE, along with reduced IgG2, both in vivo and in vitro. Moreover, T-bet was required for the in vivo and in vitro development of a distinct subset of human B cells characterized by reduced expression of CD21 and the concomitantly high expression of CD19, CD20, CD11c, FCRL5, and T-bet, a phenotype that shares many features with murine ABCs. Mechanistically, human T-bet governed CD21loCD11chi B cell differentiation by controlling the chromatin accessibility of lineage-defining genes in these cells: FAS, IL21R, SEC61B, DUSP4, DAPP1, SOX5, CD79B, and CXCR4. Thus, human T-bet is largely redundant for long-lived protective humoral immunity but is essential for the development of a distinct subset of human CD11chiCD21lo B cells.


B-Lymphocytes , Plasma Cells , Adaptor Proteins, Signal Transducing , Animals , CD11c Antigen/metabolism , Gene Expression Regulation , Humans , Immunoglobulin G , Lipoproteins/metabolism , Lymphocyte Activation , Mice
5.
J Clin Invest ; 131(17)2021 09 01.
Article En | MEDLINE | ID: mdl-34623332

We studied a child with severe viral, bacterial, fungal, and parasitic diseases, who was homozygous for a loss-of-function mutation of REL, encoding c-Rel, which is selectively expressed in lymphoid and myeloid cells. The patient had low frequencies of NK, effector memory cells reexpressing CD45RA (Temra) CD8+ T cells, memory CD4+ T cells, including Th1 and Th1*, Tregs, and memory B cells, whereas the counts and proportions of other leukocyte subsets were normal. Functional deficits of myeloid cells included the abolition of IL-12 and IL-23 production by conventional DC1s (cDC1s) and monocytes, but not cDC2s. c-Rel was also required for induction of CD86 expression on, and thus antigen-presenting cell function of, cDCs. Functional deficits of lymphoid cells included reduced IL-2 production by naive T cells, correlating with low proliferation and survival rates and poor production of Th1, Th2, and Th17 cytokines by memory CD4+ T cells. In naive CD4+ T cells, c-Rel is dispensable for early IL2 induction but contributes to later phases of IL2 expression. The patient's naive B cells displayed impaired MYC and BCL2L1 induction, compromising B cell survival and proliferation and preventing their differentiation into Ig-secreting plasmablasts. Inherited c-Rel deficiency disrupts the development and function of multiple myeloid and lymphoid cells, compromising innate and adaptive immunity to multiple infectious agents.


Genes, rel , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Proto-Oncogene Proteins c-rel/deficiency , Proto-Oncogene Proteins c-rel/genetics , Adaptive Immunity/genetics , Adaptive Immunity/immunology , Child , Consanguinity , Female , Hematopoietic Stem Cell Transplantation , Homozygote , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Lymphocyte Activation , Lymphocytes/classification , Lymphocytes/immunology , Mutation , Myeloid Cells/immunology , Primary Immunodeficiency Diseases/therapy , Protein Isoforms
6.
Sci Immunol ; 6(64): eabh0891, 2021 Oct 15.
Article En | MEDLINE | ID: mdl-34623902

Accumulation of human CD21low B cells in peripheral blood is a hallmark of chronic activation of the adaptive immune system in certain infections and autoimmune disorders. The molecular pathways underpinning the development, function, and fate of these CD21low B cells remain incompletely characterized. Here, combined transcriptomic and chromatin accessibility analyses supported a prominent role for the transcription factor T-bet in the transcriptional regulation of these T-bethighCD21low B cells. Investigating essential signals for generating these cells in vitro established that B cell receptor (BCR)/interferon-γ receptor (IFNγR) costimulation induced the highest levels of T-bet expression and enabled their differentiation during cell cultures with Toll-like receptor (TLR) ligand or CD40L/interleukin-21 (IL-21) stimulation. Low proportions of CD21low B cells in peripheral blood from patients with defined inborn errors of immunity (IEI), because of mutations affecting canonical NF-κB, CD40, and IL-21 receptor or IL-12/IFNγ/IFNγ receptor/signal transducer and activator of transcription 1 (STAT1) signaling, substantiated the essential roles of BCR- and certain T cell­derived signals in the in vivo expansion of T-bethighCD21low B cells. Disturbed TLR signaling due to MyD88 or IRAK4 deficiency was not associated with reduced CD21low B cell proportions. The expansion of human T-bethighCD21low B cells correlated with an expansion of circulating T follicular helper 1 (cTfh1) and T peripheral helper (Tph) cells, identifying potential sources of CD40L, IL-21, and IFNγ signals. Thus, we identified important pathways to target autoreactive T-bethighCD21low B cells in human autoimmune conditions, where these cells are linked to pathogenesis and disease progression.


B-Lymphocytes/immunology , Receptors, Complement 3d/immunology , T-Box Domain Proteins/immunology , T-Lymphocytes/immunology , Adult , Cohort Studies , Female , Humans , Male , Middle Aged
7.
Front Immunol ; 11: 535784, 2020.
Article En | MEDLINE | ID: mdl-33193306

Human CD21low B cells are expanded in autoimmune (AI) diseases and display a unique phenotype with high expression of co-stimulatory molecules, compatible with a potential role as antigen-presenting cells (APCs). Thus, we addressed the co-stimulatory capacity of naïve-like, IgM-memory, switched memory and CD27negIgDneg memory CD21low B cells in allogenic co-cultures with CD4 T cells. CD21low B cells of patients with AI disorders expressed high levels of not only CD86, CD80, and HLA-DR (memory B cells) but also PD-L1 ex vivo and efficiently co-stimulated CD4 T cells of healthy donors (HD), as measured by upregulation of CD25, CD69, inducible co-stimulator (ICOS), and programmed cell death protein 1 (PD-1) and induction of cytokines. While the co-stimulatory capacity of the different CD21low B-cell populations was over all comparable to CD21pos counterparts of patients and HD, especially switched memory CD21low B cells lacked the increased capacity of CD21pos switched memory B-cells to induce high expression of ICOS, IL-2, IL-10, and IFN-γ. Acknowledging the limitation of the in vitro setting, CD21low B cells do not seem to preferentially support a specific Th effector response. In summary, our data implies that CD21low B cells of patients with AI diseases can become competent APCs and may, when enriched for autoreactive B-cell receptors (BCR), potentially contribute to AI reactions as cognate interaction partners of autoreactive T cells at sites of inflammation.


Antigen Presentation , Autoimmune Diseases/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Immunologic Memory , Receptors, Complement 3d/immunology , Aged , Autoimmune Diseases/pathology , B-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/pathology , Cytokines/immunology , Female , Gene Expression Regulation/immunology , Humans , Male , Middle Aged
9.
J Clin Immunol ; 40(2): 299-309, 2020 02.
Article En | MEDLINE | ID: mdl-31865525

Variants in MAGT1 have been identified as the cause of an immune deficiency termed X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection and neoplasia (XMEN) disease. Here, we describe 2 cases of XMEN disease due to novel mutations in MAGT1, one of whom presented with classical features of XMEN disease and another who presented with a novel phenotype including probable CNS vasculitis, HHV-8 negative multicentric Castelman disease and severe molluscum contagiosum, thus highlighting the clinical diversity that may be seen in this condition. Peripheral blood immunophenotyping of these 2 patients, together with an additional 4 XMEN patients, revealed reduced NKG2D expression, impaired CD28 expression on CD8+ T cells, CD4+ T cell lymphopenia, an inverted CD4:CD8 ratio and decreased memory B cells. In addition, we showed for the first time alterations to the CD8+ T cell memory compartment, reduced CD56hi NK cells, MAIT and iNKT cells, as well as compromised differentiation of naïve CD4+ T cells into IL-21-producing Tfh-type cells in vitro. Both patients were treated with supplemental magnesium with limited benefit. However, one patient has undergone allogeneic haematopoietic stem cell transplant, with full donor chimerism and immune reconstitution. These results expand our understanding of the clinical and immunological phenotype in XMEN disease, adding to the current literature, which we further discuss here.


Cation Transport Proteins/genetics , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/physiology , Leukocytes, Mononuclear/immunology , Neoplasms/genetics , X-Linked Combined Immunodeficiency Diseases/genetics , Adult , Cell Differentiation , Child , Chimerism , Epstein-Barr Virus Infections/immunology , Hematopoietic Stem Cell Transplantation , Humans , Immunologic Memory , Immunophenotyping , Lymphopenia , Magnesium/metabolism , Male , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Neoplasms/immunology , X-Linked Combined Immunodeficiency Diseases/immunology
10.
Sci Immunol ; 4(41)2019 11 29.
Article En | MEDLINE | ID: mdl-31784499

Genetic etiologies of chronic mucocutaneous candidiasis (CMC) disrupt human IL-17A/F-dependent immunity at mucosal surfaces, whereas those of connective tissue disorders (CTDs) often impair the TGF-ß-dependent homeostasis of connective tissues. The signaling pathways involved are incompletely understood. We report a three-generation family with an autosomal dominant (AD) combination of CMC and a previously undescribed form of CTD that clinically overlaps with Ehlers-Danlos syndrome (EDS). The patients are heterozygous for a private splice-site variant of MAPK8, the gene encoding c-Jun N-terminal kinase 1 (JNK1), a component of the MAPK signaling pathway. This variant is loss-of-expression and loss-of-function in the patients' fibroblasts, which display AD JNK1 deficiency by haploinsufficiency. These cells have impaired, but not abolished, responses to IL-17A and IL-17F. Moreover, the development of the patients' TH17 cells was impaired ex vivo and in vitro, probably due to the involvement of JNK1 in the TGF-ß-responsive pathway and further accounting for the patients' CMC. Consistently, the patients' fibroblasts displayed impaired JNK1- and c-Jun/ATF-2-dependent induction of key extracellular matrix (ECM) components and regulators, but not of EDS-causing gene products, in response to TGF-ß. Furthermore, they displayed a transcriptional pattern in response to TGF-ß different from that of fibroblasts from patients with Loeys-Dietz syndrome caused by mutations of TGFBR2 or SMAD3, further accounting for the patients' complex and unusual CTD phenotype. This experiment of nature indicates that the integrity of the human JNK1-dependent MAPK signaling pathway is essential for IL-17A- and IL-17F-dependent mucocutaneous immunity to Candida and for the TGF-ß-dependent homeostasis of connective tissues.


Candidiasis, Chronic Mucocutaneous/immunology , Connective Tissue Diseases/immunology , Interleukin-17/immunology , Mitogen-Activated Protein Kinase 8/immunology , Transforming Growth Factor beta/immunology , Alleles , Cells, Cultured , Female , Humans , Male , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 8/metabolism , Mutation
11.
Gynecol Oncol ; 153(2): 292-296, 2019 05.
Article En | MEDLINE | ID: mdl-30814024

OBJECTIVES: To report the interim findings of an audit of the outcomes of sentinel node (SN) biopsy performed as a replacement for groin node dissection in women with early stage vulvar cancer in routine clinical practice in Australia and New Zealand. METHODS: A prospective multi-center study in 8 participating centers. Eligible patients had squamous cell carcinomas clinically restricted to the vulva <4 cm in diameter. SN procedures and pathological assessment were to be performed in accordance with the methods published by the GROINSS-V collaboration [1]. RESULTS: 130 women with apparent early stage vulvar cancer were enrolled. Seventeen women subsequently did not meet the eligibility criteria and were excluded. SNs were identified in 111/113 of the remaining women. Twenty-two women had positive nodes. Sixteen of these women had at least 12 months follow up and 7 (44%) had recurrent disease. Eighty-nine women had only negative nodes. Seventy-four of these women had at least 12 months follow up and 6 (8%) had recurrent disease (including 2 [2.7%] with recurrence in the groin). On subsequent review of the two women with negative SNs who had groin recurrences, it was found that the recommended pathology protocol had not been followed. In both cases, SN metastases were identified following serial sectioning of the nodes. CONCLUSIONS: SN biopsy is feasible in routine clinical practice. However, undetected metastases in a removed SN may be associated with groin recurrence. To ensure patient safety, strict adherence to the pathology protocol is an essential component in the utilization of the sentinel lymph node technique in vulvar cancer.


Lymphatic Metastasis/pathology , Neoplasm Recurrence, Local/prevention & control , Sentinel Lymph Node Biopsy/standards , Vulvar Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Australia , Feasibility Studies , Female , Groin , Guideline Adherence/statistics & numerical data , Humans , Lymph Node Excision/statistics & numerical data , Medical Audit/statistics & numerical data , Middle Aged , Neoplasm Staging , New Zealand , Outcome and Process Assessment, Health Care/statistics & numerical data , Pathology/standards , Patient Safety/standards , Practice Guidelines as Topic , Prospective Studies , Sentinel Lymph Node/pathology
12.
J Allergy Clin Immunol ; 144(1): 236-253, 2019 07.
Article En | MEDLINE | ID: mdl-30738173

BACKGROUND: Gain-of-function (GOF) mutations in PIK3CD cause a primary immunodeficiency characterized by recurrent respiratory tract infections, susceptibility to herpesvirus infections, and impaired antibody responses. Previous work revealed defects in CD8+ T and B cells that contribute to this clinical phenotype, but less is understood about the role of CD4+ T cells in disease pathogenesis. OBJECTIVE: We sought to dissect the effects of increased phosphoinositide 3-kinase (PI3K) signaling on CD4+ T-cell function. METHODS: We performed detailed ex vivo, in vivo, and in vitro phenotypic and functional analyses of patients' CD4+ T cells and a novel murine disease model caused by overactive PI3K signaling. RESULTS: PI3K overactivation caused substantial increases in numbers of memory and follicular helper T (TFH) cells and dramatic changes in cytokine production in both patients and mice. Furthermore, PIK3CD GOF human TFH cells had dysregulated phenotype and function characterized by increased programmed cell death protein 1, CXCR3, and IFN-γ expression, the phenotype of a TFH cell subset with impaired B-helper function. This was confirmed in vivo in which Pik3cd GOF CD4+ T cells also acquired an aberrant TFH phenotype and provided poor help to support germinal center reactions and humoral immune responses by antigen-specific wild-type B cells. The increase in numbers of both memory and TFH cells was largely CD4+ T-cell extrinsic, whereas changes in cytokine production and TFH cell function were cell intrinsic. CONCLUSION: Our studies reveal that CD4+ T cells with overactive PI3K have aberrant activation and differentiation, thereby providing mechanistic insight into dysfunctional antibody responses in patients with PIK3CD GOF mutations.


CD4-Positive T-Lymphocytes , Cell Differentiation , Phosphatidylinositol 3-Kinases/genetics , Animals , CD4-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Gain of Function Mutation , Humans , Mice , Phenotype
14.
Sci Immunol ; 3(30)2018 12 21.
Article En | MEDLINE | ID: mdl-30578352

Inherited IL-12Rß1 and TYK2 deficiencies impair both IL-12- and IL-23-dependent IFN-γ immunity and are rare monogenic causes of tuberculosis, each found in less than 1/600,000 individuals. We show that homozygosity for the common TYK2 P1104A allele, which is found in about 1/600 Europeans and between 1/1000 and 1/10,000 individuals in regions other than East Asia, is more frequent in a cohort of patients with tuberculosis from endemic areas than in ethnicity-adjusted controls (P = 8.37 × 10-8; odds ratio, 89.31; 95% CI, 14.7 to 1725). Moreover, the frequency of P1104A in Europeans has decreased, from about 9% to 4.2%, over the past 4000 years, consistent with purging of this variant by endemic tuberculosis. Surprisingly, we also show that TYK2 P1104A impairs cellular responses to IL-23, but not to IFN-α, IL-10, or even IL-12, which, like IL-23, induces IFN-γ via activation of TYK2 and JAK2. Moreover, TYK2 P1104A is properly docked on cytokine receptors and can be phosphorylated by the proximal JAK, but lacks catalytic activity. Last, we show that the catalytic activity of TYK2 is essential for IL-23, but not IL-12, responses in cells expressing wild-type JAK2. In contrast, the catalytic activity of JAK2 is redundant for both IL-12 and IL-23 responses, because the catalytically inactive P1057A JAK2, which is also docked and phosphorylated, rescues signaling in cells expressing wild-type TYK2. In conclusion, homozygosity for the catalytically inactive P1104A missense variant of TYK2 selectively disrupts the induction of IFN-γ by IL-23 and is a common monogenic etiology of tuberculosis.


Interferon-gamma/immunology , Interleukin-23/immunology , Mutation, Missense/genetics , TYK2 Kinase/genetics , Tuberculosis/immunology , Cells, Cultured , Homozygote , Humans , Interleukin-23/deficiency , TYK2 Kinase/immunology
15.
J Clin Immunol ; 38(8): 938-939, 2018 Nov.
Article En | MEDLINE | ID: mdl-30430354

The original version of this article unfortunately did not display the appropriate captions in the figure. The correct version is displayed below.

17.
J Exp Med ; 215(8): 2073-2095, 2018 08 06.
Article En | MEDLINE | ID: mdl-30018075

Gain-of-function (GOF) mutations in PIK3CD, encoding the p110δ subunit of phosphatidylinositide 3-kinase (PI3K), cause a primary immunodeficiency. Affected individuals display impaired humoral immune responses following infection or immunization. To establish mechanisms underlying these immune defects, we studied a large cohort of patients with PIK3CD GOF mutations and established a novel mouse model using CRISPR/Cas9-mediated gene editing to introduce a common pathogenic mutation in Pik3cd In both species, hyperactive PI3K severely affected B cell development and differentiation in the bone marrow and the periphery. Furthermore, PI3K GOF B cells exhibited intrinsic defects in class-switch recombination (CSR) due to impaired induction of activation-induced cytidine deaminase (AID) and failure to acquire a plasmablast gene signature and phenotype. Importantly, defects in CSR, AID expression, and Ig secretion were restored by leniolisib, a specific p110δ inhibitor. Our findings reveal key roles for balanced PI3K signaling in B cell development and long-lived humoral immunity and memory and establish the validity of treating affected individuals with p110δ inhibitors.


B-Lymphocytes/cytology , B-Lymphocytes/immunology , Class I Phosphatidylinositol 3-Kinases/genetics , Germ-Line Mutation/genetics , Phosphatidylinositol 3-Kinases/genetics , Animals , Antibody Affinity/immunology , Bone Marrow Cells/cytology , Cell Differentiation , Cell Proliferation , Child , Gain of Function Mutation/genetics , Humans , Immunoglobulin Class Switching , Immunoglobulins/metabolism , Interleukins/pharmacology , Mice , Models, Animal , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Plasma Cells/metabolism , Signal Transduction
18.
Sci Immunol ; 3(24)2018 06 15.
Article En | MEDLINE | ID: mdl-29907691

Heterozygosity for human signal transducer and activator of transcription 3 (STAT3) dominant-negative (DN) mutations underlies an autosomal dominant form of hyper-immunoglobulin E syndrome (HIES). We describe patients with an autosomal recessive form of HIES due to loss-of-function mutations of a previously uncharacterized gene, ZNF341 ZNF341 is a transcription factor that resides in the nucleus, where it binds a specific DNA motif present in various genes, including the STAT3 promoter. The patients' cells have low basal levels of STAT3 mRNA and protein. The autoinduction of STAT3 production, activation, and function by STAT3-activating cytokines is strongly impaired. Like patients with STAT3 DN mutations, ZNF341-deficient patients lack T helper 17 (TH17) cells, have an excess of TH2 cells, and have low memory B cells due to the tight dependence of STAT3 activity on ZNF341 in lymphocytes. Their milder extra-hematopoietic manifestations and stronger inflammatory responses reflect the lower ZNF341 dependence of STAT3 activity in other cell types. Human ZNF341 is essential for the STAT3 transcription-dependent autoinduction and sustained activity of STAT3.


Gene Expression Regulation/immunology , Job Syndrome/genetics , STAT3 Transcription Factor/genetics , Transcription Factors/genetics , Transcription, Genetic/immunology , Adolescent , Adult , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Nucleus/metabolism , Consanguinity , Cytokines/immunology , Cytokines/metabolism , Exons/genetics , Female , Genes, Recessive/genetics , Genes, Recessive/immunology , Homozygote , Humans , Immunoglobulin E/blood , Immunoglobulin E/immunology , Job Syndrome/blood , Job Syndrome/immunology , Loss of Function Mutation , Lymphocyte Count , Male , Middle Aged , Pedigree , Promoter Regions, Genetic/genetics , RNA, Messenger/metabolism , STAT3 Transcription Factor/immunology , STAT3 Transcription Factor/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Transcription Factors/immunology , Transcription Factors/metabolism , Exome Sequencing , Young Adult , Zinc Fingers/genetics
...