Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Plant Res ; 137(3): 315-330, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38668956

RESUMEN

Phosphorus is indispensable for plant growth and development, with its status crucial for determining crop productivity. Plants have evolved various biochemical, morphological, and developmental responses to thrive under conditions of low P availability, as inorganic phosphate (Pi), the primary form of P uptake, is often insoluble in soils. Over the past 25 years, extensive research has focused on understanding these responses, collectively forming the Pi starvation response system. This effort has not only expanded our knowledge of strategies to cope with Pi starvation (PS) but also confirmed their adaptive significance. Moreover, it has identified and characterized numerous components of the intricate regulatory network governing P homeostasis. This review emphasizes recent advances in PS signaling, particularly highlighting the physiological importance of local PS signaling in inhibiting primary root growth and uncovering the role of TORC1 signaling in this process. Additionally, advancements in understanding shoot-root Pi allocation and a novel technique for studying Pi distribution in plants are discussed. Furthermore, emerging data on the regulation of plant-microorganism interactions by the PS regulatory system, crosstalk between the signaling pathways of phosphate starvation, phytohormones and immunity, and recent studies on natural variation in Pi homeostasis are addressed.


Asunto(s)
Fosfatos , Plantas , Transducción de Señal , Fosfatos/metabolismo , Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Homeostasis , Desarrollo de la Planta
5.
Mol Plant ; 15(1): 138-150, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34562666

RESUMEN

Phosphorous (P) and iron (Fe), two essential nutrients for plant growth and development, are highly abundant elements in the earth's crust but often display low availability to plants. Due to the ability to form insoluble complexes, the antagonistic interaction between P and Fe nutrition in plants has been noticed for decades. However, the underlying molecular mechanism modulating the signaling and homeostasis between them remains obscure. Here, we show that the possible iron sensors HRZs, the iron deficiency-induced E3 ligases, could interact with the central regulator of phosphate (Pi) signaling, PHR2, and prompt its ubiquitination at lysine residues K319 and K328, leading to its degradation in rice. Consistent with this, the hrzs mutants displayed a high Pi accumulation phenotype. Furthermore, we found that iron deficiency could attenuate Pi starvation signaling by inducing the expression of HRZs, which in turn trigger PHR2 protein degradation. Interestingly, on the other hand, rice PHRs could negatively regulate the expression of HRZs to modulate iron deficiency responses. Therefore, PHR2 and HRZs form a reciprocal inhibitory module to coordinate Pi and iron signaling and homeostasis in rice. Taken together, our results uncover a molecular link between Pi and iron master regulators, which fine-tunes plant adaptation to Pi and iron availability in rice.


Asunto(s)
Hierro/metabolismo , Oryza/genética , Oryza/metabolismo , Fósforo/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal/efectos de los fármacos , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo
6.
Mol Plant ; 15(1): 104-124, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34954444

RESUMEN

Phosphorus (P) is an essential nutrient for plant growth and reproduction. Plants preferentially absorb P as orthophosphate (Pi), an ion that displays low solubility and that is readily fixed in the soil, making P limitation a condition common to many soils and Pi fertilization an inefficient practice. To cope with Pi limitation, plants have evolved a series of developmental and physiological responses, collectively known as the Pi starvation rescue system (PSR), aimed to improve Pi acquisition and use efficiency (PUE) and protect from Pi-starvation-induced stress. Intensive research has been carried out during the last 20 years to unravel the mechanisms underlying the control of the PSR in plants. Here we review the results of this research effort that have led to the identification and characterization of several core Pi starvation signaling components, including sensors, transcription factors, microRNAs (miRNAs) and miRNA inhibitors, kinases, phosphatases, and components of the proteostasis machinery. We also refer to recent results revealing the existence of intricate signaling interplays between Pi and other nutrients and antagonists, N, Fe, Zn, and As, that have changed the initial single-nutrient-centric view to a more integrated view of nutrient homeostasis. Finally, we discuss advances toward improving PUE and future research priorities.


Asunto(s)
Adaptación Fisiológica/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fósforo/deficiencia , Fósforo/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Genes de Plantas , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/genética
7.
Mol Plant ; 14(9): 1489-1507, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34048950

RESUMEN

In nature, plants acquire nutrients from soils to sustain growth, and at the same time, they need to avoid the uptake of toxic compounds and/or possess tolerance systems to cope with them. This is particularly challenging when the toxic compound and the nutrient are chemically similar, as in the case of phosphate and arsenate. In this study, we demonstrated that regulatory elements of the phosphate starvation response (PSR) coordinate the arsenate detoxification machinery in the cell. We showed that arsenate repression of the phosphate transporter PHT1;1 is associated with the degradation of the PSR master regulator PHR1. Once arsenic is sequestered into the vacuole, PHR1 stability is restored and PHT1;1 expression is recovered. Furthermore, we identified an arsenite responsive SKP1-like protein and a PHR1 interactor F-box (PHIF1) as constituents of the SCF complex responsible for PHR1 degradation.We found that arsenite, the form to which arsenate is reduced for compartmentalization in vacuoles, represses PHT1;1 expression, providing a highly selective signal versus phosphate to control PHT1;1 expression in response to arsenate. Collectively, our results provide molecular insights into a sensing mechanism that regulates arsenate/phosphate uptake depending on the plant's detoxification capacity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arseniatos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arseniatos/farmacología , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Vacuolas/metabolismo
9.
Plant Cell ; 31(10): 2411-2429, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31363038

RESUMEN

The plant endosomal trafficking pathway controls the abundance of membrane-associated soluble proteins, as shown for abscisic acid (ABA) receptors of the PYRABACTIN RESISTANCE1/PYR1-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORS (PYR/PYL/RCAR) family. ABA receptor targeting for vacuolar degradation occurs through the late endosome route and depends on FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING1 (FYVE1) and VACUOLAR PROTEIN SORTING23A (VPS23A), components of the ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT-I (ESCRT-I) complexes. FYVE1 and VPS23A interact with ALG-2 INTERACTING PROTEIN-X (ALIX), an ESCRT-III-associated protein, although the functional relevance of such interactions and their consequences in cargo sorting are unknown. In this study we show that Arabidopsis (Arabidopsis thaliana) ALIX directly binds to ABA receptors in late endosomes, promoting their degradation. Impaired ALIX function leads to altered endosomal localization and increased accumulation of ABA receptors. In line with this activity, partial loss-of-function alix-1 mutants display ABA hypersensitivity during growth and stomatal closure, unveiling a role for the ESCRT machinery in the control of water loss through stomata. ABA-hypersensitive responses are suppressed in alix-1 plants impaired in PYR/PYL/RCAR activity, in accordance with ALIX affecting ABA responses primarily by controlling ABA receptor stability. ALIX-1 mutant protein displays reduced interaction with VPS23A and ABA receptors, providing a molecular basis for ABA hypersensitivity in alix-1 mutants. Our findings unveil a negative feedback mechanism triggered by ABA that acts via ALIX to control the accumulation of specific PYR/PYL/RCAR receptors.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Endosomas/metabolismo , Estomas de Plantas/genética , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Estomas de Plantas/química , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Unión Proteica/genética , Transporte de Proteínas/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Vacuolas/genética , Vacuolas/metabolismo , Agua/metabolismo
10.
Nat Plants ; 5(4): 339-340, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30911124
11.
Curr Opin Plant Biol ; 39: 40-49, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28587933

RESUMEN

Plants have evolved numerous adaptive developmental and metabolic responses to cope with growth in conditions of limited phosphate (Pi). Regulation of these Pi starvation responses (PSR) at the organism level involves not only cellular Pi perception in different organs, but also inter-organ communication of Pi levels via systemic signaling. Here we summarize recent discoveries on Pi starvation sensing and signaling, with special emphasis on structure-function studies that showed a role for inositol polyphosphates (InsP) as intracellular Pi signals, and on genomic studies that identified a large number of mRNAs with inter-organ mobility, which provide an immense source of potential systemic signals in the control of PSR and other responses.


Asunto(s)
Fósforo/metabolismo , Plantas/metabolismo , Transducción de Señal , Fosfatos de Inositol/metabolismo
12.
Nature ; 543(7646): 513-518, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28297714

RESUMEN

Plants live in biogeochemically diverse soils with diverse microbiota. Plant organs associate intimately with a subset of these microbes, and the structure of the microbial community can be altered by soil nutrient content. Plant-associated microbes can compete with the plant and with each other for nutrients, but may also carry traits that increase the productivity of the plant. It is unknown how the plant immune system coordinates microbial recognition with nutritional cues during microbiome assembly. Here we establish that a genetic network controlling the phosphate stress response influences the structure of the root microbiome community, even under non-stress phosphate conditions. We define a molecular mechanism regulating coordination between nutrition and defence in the presence of a synthetic bacterial community. We further demonstrate that the master transcriptional regulators of phosphate stress response in Arabidopsis thaliana also directly repress defence, consistent with plant prioritization of nutritional stress over defence. Our work will further efforts to define and deploy useful microbes to enhance plant performance.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Microbiota/fisiología , Fosfatos/metabolismo , Inmunidad de la Planta , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microbiota/inmunología , Mutación , Inmunidad de la Planta/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Plant Physiol ; 171(2): 1418-26, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208271

RESUMEN

The presence of arsenic in soil and water is a constant threat to plant growth in many regions of the world. Phytohormones act in the integration of growth control and stress response, but their role in plant responses to arsenic remains to be elucidated. Here, we show that arsenate [As(V)], the most prevalent arsenic chemical species in nature, causes severe depletion of endogenous cytokinins (CKs) in the model plant Arabidopsis (Arabidopsis thaliana). We found that CK signaling mutants and transgenic plants with reduced endogenous CK levels showed an As(V)-tolerant phenotype. Our data indicate that in CK-depleted plants exposed to As(V), transcript levels of As(V)/phosphate-transporters were similar or even higher than in wild-type plants. In contrast, CK depletion provoked the coordinated activation of As(V) tolerance mechanisms, leading to the accumulation of thiol compounds such as phytochelatins and glutathione, which are essential for arsenic sequestration. Transgenic CK-deficient Arabidopsis and tobacco lines show a marked increase in arsenic accumulation. Our findings indicate that CK is an important regulatory factor in plant adaptation to arsenic stress.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Arsénico/metabolismo , Arsénico/toxicidad , Citocininas/farmacología , Compuestos de Sulfhidrilo/metabolismo , Butionina Sulfoximina/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutatión/metabolismo , Inactivación Metabólica/efectos de los fármacos , Fenotipo , Fitoquelatinas/metabolismo , Regulación hacia Arriba/efectos de los fármacos
15.
Plant Cell ; 27(9): 2560-81, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26342016

RESUMEN

Prior to the release of their cargoes into the vacuolar lumen, sorting endosomes mature into multivesicular bodies (MVBs) through the action of ENDOSOMAL COMPLEX REQUIRED FOR TRANSPORT (ESCRT) protein complexes. MVB-mediated sorting of high-affinity phosphate transporters (PHT1) to the vacuole limits their plasma membrane levels under phosphate-sufficient conditions, a process that allows plants to maintain phosphate homeostasis. Here, we describe ALIX, a cytosolic protein that associates with MVB by interacting with ESCRT-III subunit SNF7 and mediates PHT1;1 trafficking to the vacuole in Arabidopsis thaliana. We show that the partial loss-of-function mutant alix-1 displays reduced vacuolar degradation of PHT1;1. ALIX derivatives containing the alix-1 mutation showed reduced interaction with SNF7, providing a simple molecular explanation for impaired cargo trafficking in alix-1 mutants. In fact, the alix-1 mutation also hampered vacuolar sorting of the brassinosteroid receptor BRI1. We also show that alix-1 displays altered vacuole morphogenesis, implying a new role for ALIX proteins in vacuolar biogenesis, likely acting as part of ESCRT-III complexes. In line with a presumed broad target spectrum, the alix-1 mutation is pleiotropic, leading to reduced plant growth and late flowering, with stronger alix mutations being lethal, indicating that ALIX participates in diverse processes in plants essential for their life.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Citosol/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Homeostasis , Mutación , Proteínas de Transporte de Fosfato/genética , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Vacuolas/genética , Vacuolas/metabolismo
16.
Proc Natl Acad Sci U S A ; 112(40): E5543-51, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26324913

RESUMEN

Ubiquitination is a signal for various cellular processes, including for endocytic degradation of plasma membrane cargos. Ubiquitinating as well as deubiquitinating enzymes (DUBs) can regulate these processes by modifying the ubiquitination status of target protein. Although accumulating evidence points to the important regulatory role of DUBs, the molecular basis of their regulation is still not well understood. Associated molecule with the SH3 domain of signal transduction adaptor molecule (STAM) (AMSH) is a conserved metalloprotease DUB in eukaryotes. AMSH proteins interact with components of the endosomal sorting complex required for transport (ESCRT) and are implicated in intracellular trafficking. To investigate how the function of AMSH is regulated at the cellular level, we carried out an interaction screen for the Arabidopsis AMSH proteins and identified the Arabidopsis homolog of apoptosis-linked gene-2 interacting protein X (ALIX) as a protein interacting with AMSH3 in vitro and in vivo. Analysis of alix knockout mutants in Arabidopsis showed that ALIX is essential for plant growth and development and that ALIX is important for the biogenesis of the vacuole and multivesicular bodies (MVBs). Cell biological analysis revealed that ALIX and AMSH3 colocalize on late endosomes. Although ALIX did not stimulate AMSH3 activity in vitro, in the absence of ALIX, AMSH3 localization on endosomes was abolished. Taken together, our data indicate that ALIX could function as an important regulator for AMSH3 function at the late endosomes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Endosomas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/ultraestructura , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Plantas Modificadas Genéticamente , Unión Proteica , Plantones/genética , Plantones/metabolismo , Plantones/ultraestructura , Técnicas del Sistema de Dos Híbridos , Ubiquitina/metabolismo , Proteasas Ubiquitina-Específicas/genética , Vacuolas/metabolismo , Vacuolas/ultraestructura
17.
Plant Cell ; 27(3): 711-23, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25724641

RESUMEN

Phosphate transporters (PTs) mediate phosphorus uptake and are regulated at the transcriptional and posttranslational levels. In one key mechanism of posttranslational regulation, phosphorylation of PTs affects their trafficking from the endoplasmic reticulum (ER) to the plasma membrane. However, the kinase(s) mediating PT phosphorylation and the mechanism leading to ER retention of phosphorylated PTs remain unclear. In this study, we identified a rice (Oryza sativa) kinase subunit, CK2ß3, which interacts with PT2 and PT8 in a yeast two-hybrid screen. Also, the CK2α3/ß3 holoenzyme phosphorylates PT8 under phosphate-sufficient conditions. This phosphorylation inhibited the interaction of PT8 with PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1, a key cofactor regulating the exit of PTs from the ER to the plasma membrane. Additionally, phosphorus starvation promoted CK2ß3 degradation, relieving the negative regulation of PT phosphorus-insufficient conditions. In accordance, transgenic expression of a nonphosphorylatable version of OsPT8 resulted in elevated levels of that protein at the plasma membrane and enhanced phosphorus accumulation and plant growth under various phosphorus regimes. Taken together, these results indicate that CK2α3/ß3 negatively regulates PTs and phosphorus status regulates CK2α3/ß3.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Oryza/enzimología , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/farmacología , Proteínas de Plantas/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Modelos Biológicos , Mutación/genética , Oryza/efectos de los fármacos , Fenotipo , Fosforilación/efectos de los fármacos , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Serina/metabolismo
18.
Nat Plants ; 1: 14023, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-27246759

RESUMEN

Despite evolutionary conserved mechanisms to silence transposable element activity, there are drastic differences in the abundance of transposable elements even among closely related plant species. We conducted a de novo assembly for the 375 Mb genome of the perennial model plant, Arabis alpina. Analysing this genome revealed long-lasting and recent transposable element activity predominately driven by Gypsy long terminal repeat retrotransposons, which extended the low-recombining pericentromeres and transformed large formerly euchromatic regions into repeat-rich pericentromeric regions. This reduced capacity for long terminal repeat retrotransposon silencing and removal in A. alpina co-occurs with unexpectedly low levels of DNA methylation. Most remarkably, the striking reduction of symmetrical CG and CHG methylation suggests weakened DNA methylation maintenance in A. alpina compared with Arabidopsis thaliana. Phylogenetic analyses indicate a highly dynamic evolution of some components of methylation maintenance machinery that might be related to the unique methylation in A. alpina.

19.
Nat Plants ; 1(4): 15025, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27247031

RESUMEN

The concept that proteins and small RNAs can move to and function in distant body parts is well established. However, non-cell-autonomy of small RNA molecules raises the question: To what extent are protein-coding messenger RNAs (mRNAs) exchanged between tissues in plants? Here we report the comprehensive identification of 2,006 genes producing mobile RNAs in Arabidopsis thaliana. The analysis of variant ecotype transcripts that were present in heterografted plants allowed the identification of mRNAs moving between various organs under normal or nutrient-limiting conditions. Most of these mobile transcripts seem to follow the phloem-dependent allocation pathway transporting sugars from photosynthetic tissues to roots via the vasculature. Notably, a high number of transcripts also move in the opposite, root-to-shoot direction and are transported to specific tissues including flowers. Proteomic data on grafted plants indicate the presence of proteins from mobile RNAs, allowing the possibility that they may be translated at their destination site. The mobility of a high number of mRNAs suggests that a postulated tissue-specific gene expression profile might not be predictive for the actual plant body part in which a transcript exerts its function.


Asunto(s)
Arabidopsis/genética , ARN Mensajero/genética , Arabidopsis/crecimiento & desarrollo , Ecotipo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Brotes de la Planta/genética , ARN de Planta/genética , ARN de Planta/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(41): 14947-52, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25271326

RESUMEN

To cope with growth in low-phosphate (Pi) soils, plants have evolved adaptive responses that involve both developmental and metabolic changes. Phosphate Starvation Response 1 (PHR1) and related transcription factors play a central role in the control of Pi starvation responses (PSRs). How Pi levels control PHR1 activity, and thus PSRs, remains to be elucidated. Here, we identify a direct Pi-dependent inhibitor of PHR1 in Arabidopsis, SPX1, a nuclear protein that shares the SPX domain with yeast Pi sensors and with several Pi starvation signaling proteins from plants. Double mutation of SPX1 and of a related gene, SPX2, resulted in molecular and physiological changes indicative of increased PHR1 activity in plants grown in Pi-sufficient conditions or after Pi refeeding of Pi-starved plants but had only a limited effect on PHR1 activity in Pi-starved plants. These data indicate that SPX1 and SPX2 have a cellular Pi-dependent inhibitory effect on PHR1. Coimmunoprecipitation assays showed that the SPX1/PHR1 interaction in planta is highly Pi-dependent. DNA-binding and pull-down assays with bacterially expressed, affinity-purified tagged SPX1 and ΔPHR1 proteins showed that SPX1 is a competitive inhibitor of PHR1 binding to its recognition sequence, and that its efficiency is highly dependent on the presence of Pi or phosphite, a nonmetabolizable Pi analog that can repress PSRs. The relative strength of the SPX1/PHR1 interaction is thus directly influenced by Pi, providing a link between Pi perception and signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Fosfatos/farmacología , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , ADN de Plantas/metabolismo , Modelos Biológicos , Mutación/genética , Proteínas Nucleares/genética , Unión Proteica/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...