Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutr Metab Cardiovasc Dis ; 34(5): 1110-1128, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38553358

RESUMEN

AIMS: A systematic review and meta-analysis of published randomized controlled trials was conducted to collate evidence from studies implementing ancient grains and investigate the impact of ancient grain consumption on health outcomes of patients with Diabetes Mellitus (DM). DATA SYNTHESIS: Twenty-nine randomized controlled trials were included, and 13 were meta-analyzed. Interventions ranged from 1 day to 24 weeks; most samples were affected by DM type 2 (n = 28 studies) and the ancient grains used were oats (n = 10 studies), brown rice (n = 6 studies), buckwheat (n = 4 studies), chia (n = 3 studies), Job's Tears (n = 2 studies), and barley, Khorasan and millet (n = 1 study). Thirteen studies that used oats, brown rice, and chia provided data for a quantitative synthesis. Four studies using oats showed a small to moderate beneficial effect on health outcomes including LDL-c (n = 717, MD: 0.30 mmol/l, 95% CI: 0.42 to -0.17, Z = 4.61, p < 0.05, I2 = 0%), and TC (n = 717, MD: 0.44 mmol/l, 95% CI: 0.63 to -0.24, Z = 4.40, p < 0.05, I2 = 0%). Pooled analyses of studies using chia and millet did not show significant effects on selected outcomes. CONCLUSIONS: For adults affected by DM type 2, the use of oats may improve lipidic profile. Further experimental designs are needed in interventional research to better understand the effects of ancient grains on diabetes health outcomes. PROSPERO REGISTRATION: CRD42023422386.


Asunto(s)
Diabetes Mellitus Tipo 2 , Grano Comestible , Adulto , Humanos , Diabetes Mellitus Tipo 2/dietoterapia , Lípidos , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Plants (Basel) ; 12(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37653870

RESUMEN

This study aims to evaluate the metabolic changes that occurred in olive leaves as responses over time to variations in climatic elements. Rainfall, temperature, and solar radiation data were collected over 4 months (August-November) to assess the impact of different climatic trends on the metabolism of the leaves of 15 Italian olive cultivars, cultivated at the experimental farm of the University of Florence. The net photosynthetic rate (AN) and stomatal conductance (gs), measured as main indicators of primary metabolism, were mainly influenced by the "cultivar" effect compared to the "climate" effect. The lowest AN value was showed by "Bianchera", while "Ascolana" recorded the highest (8.6 and 13.6 µmol CO2 m-2s-1, respectively). On the other hand, the secondary metabolism indicators, volatile organic compound (VOC) and oleuropein (OL) content, were much more influenced by climate trends, especially rainfall. A phase of high rainfall caused a significant increase in the VOCs emission from leaves, even with different behaviors among the genotypes. The highest differences were observed between "Maiatica di Ferrandina", with the highest average values (~85,000 npcs), and "Frantoio", which showed the lowest (~22,700 npcs). The OL content underwent considerable fluctuations in relation to the rainfall but also appeared to be controlled by the genotype. "Coratina" always showed the highest OL concentration (reaching the maximum ~98 mg g-1), indicating the great potential of this cultivar for the industrial recovery of OL.

3.
Biology (Basel) ; 12(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37759562

RESUMEN

Animal feeding through the reuse of agro-industrial by-products in one of the ultimate goals of sustainable agriculture. Olive oil pomace (OOP) produced as a waste product during olive oil milling has been used as an ingredient in the diet for Holstein lactating cows. Recent findings have shown no decrease in animal performance, feed intake or detrimental effect on rumen microbiota. In contrast, an improvement in C18 polyunsaturated fatty acids has been observed. In this work, the milk protein content from cows fed a commercial diet (CON) or an experimental one supplemented with OOP was determined and compared, and the peptides derived from the simulated gastrointestinal digestion of raw milk were analyzed. After fractionation via RP-HPLC, peptides were characterized for their biological activity on different cell lines. The ability to reduce both the intracellular ROS content and the expression of inflammatory markers, such as Cyclooxygenase, isoenzyme 2 (COX-2) and inducible Nitric Oxide Synthase (iNOS), as well as the remarkable properties to induce cell differentiation and to slow down the proliferation of human intestinal cancer cells, enable us to define them as bioactive peptides. In spite of there being no observed significant difference between the healthy activity of CON and OOP peptides, the results allow us to broaden the knowledge about the biological activity of these bioactive peptides and to confirm that agro-industrial by-products may be successfully incorporated into the feeding strategy of dairy cows.

4.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768573

RESUMEN

Cerato-ulmin (CU) is a 75-amino-acid-long protein that belongs to the hydrophobin family. It self-assembles at hydrophobic-hydrophilic interfaces, forming films that reverse the wettability properties of the bound surface: a capability that may confer selective advantages to the fungus in colonizing and infecting elm trees. Here, we show for the first time that CU can elicit a defense reaction (induction of phytoalexin synthesis and ROS production) in non-host plants (Arabidopsis) and exerts its eliciting capacity more efficiently when in its soluble monomeric form. We identified two hydrophobic clusters on the protein's loops endowed with dynamical and physical properties compatible with the possibility of reversibly interconverting between a disordered conformation and a ß-strand-rich conformation when interacting with hydrophilic or hydrophobic surfaces. We propose that the plasticity of those loops may be part of the molecular mechanism that governs the protein defense elicitation capability.


Asunto(s)
Plumbaginaceae , Plumbaginaceae/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Humectabilidad , Interacciones Hidrofóbicas e Hidrofílicas
5.
Healthcare (Basel) ; 11(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36673609

RESUMEN

The aim of this study was to characterize the salivary proteome and metabolome of highly trained female and male young basketball players, highlighting common and different traits. A total of 20 male and female basketball players (10 female and 10 male) and 20 sedentary control subjects (10 female and 10 male) were included in the study. The athletes exercised at least five times per week for 2 h per day. Saliva samples were collected mid-season, between 9:00 and 11:00 a.m. and away from sport competition. The proteome and metabolome were analyzed by using 2DE and GC-MS techniques, respectively. A computerized 2DE gel image analysis revealed 43 spots that varied in intensity among groups. Between these spots, 10 (23.2%) were differentially expressed among male athletes and controls, 22 (51.2%) between female basketball players and controls, 11 spots (25.6%) between male and female athletes, and 13 spots (30.2%) between male and female controls. Among the proteins identified were Immunoglobulin, Alpha-Amylase, and Dermcidin, which are inflammation-related proteins. In addition, several amino acids, such as glutamic acid, lysine, ornithine, glycine, tyrosine, threonine, and valine, were increased in trained athletes. In this study, we highlight that saliva is a useful biofluid to assess athlete performance and confirm that the adaptation of men and women to exercise has some common features, but also some different sex-specific behaviors, including differential amino acid utilization and expression of inflammation-related proteins, which need to be further investigated. Moreover, in the future, it will be interesting to examine the influence of sport-type on these differences.

6.
Plant Physiol Biochem ; 176: 9-20, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35182963

RESUMEN

Nickel-induced changes in photosynthetic activity were investigated in three Ni-hyperaccumulating Odontarrhena species with increasing Ni tolerance and accumulation capacity, O. muralis, O. moravensis, and O. chalcidica. Plantlets were grown in hydroponics at increasing NiSO4 concentrations (0, 0.25, and 1 mM) for one week, and the effects of Ni on growth, metal accumulation, photosynthesis, and nitrogen (N) allocation to components of the photosynthetic apparatus were analysed. Nickel treatments in O. chalcidica, and O. moravensis to a lesser extent, increased not only the photochemical efficiency of photosystem II (PSII) and the CO2 assimilation rate, but also CO2 diffusion from the atmosphere to the carboxylation sites. These two species displayed a specific increase and/or rearrangement of the photosynthetic pigments and a higher leaf N allocation to the photosynthetic components in the presence of the metal. Odontarrhena muralis displayed a decrease in photosynthetic performance at the lowest Ni concentration due to a combination of both stomatal and non-stomatal limitations. Our data represent the first complete investigation of the effects of Ni on the photosynthetic machinery in Ni hyperaccumulating plants. Our findings clearly indicate a stimulatory, hormetic-like, effect of the metal on both biophysics and biochemistry of photosynthesis in the species with the highest hyperaccumulation capacity.


Asunto(s)
Brassicaceae , Clorofila , Níquel/farmacología , Fotosíntesis , Complejo de Proteína del Fotosistema II , Hojas de la Planta
7.
Eur J Nutr ; 61(4): 1905-1918, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35066640

RESUMEN

PURPOSE: The impact of tea constituents on the insulin-signaling pathway as well as their antidiabetic activity are still debated questions. Previous studies suggested that some tea components act as Protein Tyrosine Phosphatase 1B (PTP1B) inhibitors. However, their nature and mechanism of action remain to be clarified. This study aims to evaluate the effects of both tea extracts and some of their constituents on two main negative regulators of the insulin-signaling pathway, Low-Molecular-Weight Protein Tyrosine Phosphatase (LMW-PTP) and PTP1B. METHODS: The effects of cold and hot tea extracts on the enzyme activity were evaluated through in vitro assays. Active components were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Finally, the impact of both whole tea extracts and specific active tea components on the insulin-signaling pathway was evaluated in liver and muscle cells. RESULTS: We found that both cold and hot tea extracts inhibit LMW-PTP and PTP1B, even if with a different mechanism of action. We identified galloyl moiety-bearing catechins as the tea components responsible for this inhibition. Specifically, kinetic and docking analyses revealed that epigallocatechin gallate (EGCG) is a mixed-type non-competitive inhibitor of PTP1B, showing an IC50 value in the nanomolar range. Finally, in vitro assays confirmed that EGCG acts as an insulin-sensitizing agent and that the chronic treatment of liver cells with tea extracts results in an enhancement of the insulin receptor levels and insulin sensitivity. CONCLUSION: Altogether, our data suggest that tea components are able to regulate both protein levels and activation status of the insulin receptor by modulating the activity of PTP1B.


Asunto(s)
Resistencia a la Insulina , Proteínas Tirosina Fosfatasas , Receptor de Insulina , , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Insulina/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal , Té/química
8.
Int J Biol Macromol ; 179: 279-291, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33675829

RESUMEN

Bacterial canker disease caused by Pseudomonas syringae pv. actinidiae (Psa) biovar 3 involved all global interest since 2008. We have found that in Psa3 genome, similarly to other P. syringae, there are three putative genes, lscα, lscß and lscγ, coding for levansucrases. These enzymes, breaking the sucrose moiety and releasing glucose can synthetize the fructose polymer levan, a hexopolysaccharide that is well known to be part of the survival strategies of many different bacteria. Considering lscα non-coding because of a premature stop codon, in the present work we cloned and expressed the two putatively functional levansucrases of Psa3, lscß and lscγ, in E. coli and characterized their biochemical properties such as optimum of pH, temperature and ionic strength. Interestingly, we found completely different behaviour for both sucrose splitting activity and levan synthesis between the two proteins; lscγ polymerizes levan quickly at pH 5.0 while lscß has great sucrose hydrolysis activity at pH 7.0. Moreover, we demonstrated that at least in vitro conditions, they are differentially expressed suggesting two distinct roles in the physiology of the bacterium.


Asunto(s)
Actinidia/microbiología , Fructanos/metabolismo , Hexosiltransferasas/química , Enfermedades de las Plantas/microbiología , Pseudomonas syringae , Cinética , Pseudomonas syringae/enzimología , Pseudomonas syringae/aislamiento & purificación
9.
Biochim Biophys Acta Gen Subj ; 1865(5): 129843, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33444726

RESUMEN

Among their various functions, the members of the cerato-platanin family can stimulate plants' defense responses and induce resistance against microbial pathogens. Recent results suggest that conserved loops, also involved in chitin binding, might be a structural motif central for their eliciting activity. Here, we focus on cerato-platanin and its orthologous cerato-populin, searching for a rationale of their diverse efficiency to elicit plants' defense and to interact with oligosaccharides. A 3D model of cerato-populin has been generated by homology modeling using the NMR-derived cerato-platanin structure as template, and it has been validated by fitting with residual dipolar couplings. Loops ß1-ß2 and ß2-ß3 have been indicated as important for some CPPs members to express their biological function. When compared to cerato-platanin, in cerato-populin they present two mutations and an insertion that significantly modify their electrostatic surface. NMR relaxation experiments point to a reduced conformational plasticity of cerato-populin loops with respect to the ones of cerato-platanin. The different electrostatic surface of the loops combined with a distinct network of intra-molecular interactions are expected to be factors that, by leading to a diverse spatial organization and dissimilar collective motions, can regulate the eliciting efficacy of the two proteins and their affinity for oligosaccharides.


Asunto(s)
Ceratocystis/metabolismo , Proteínas Fúngicas/metabolismo , Oligosacáridos/metabolismo , Enfermedades de las Plantas/microbiología , Ceratocystis/química , Proteínas Fúngicas/química , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
Plants (Basel) ; 9(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271845

RESUMEN

Albanian taxa and populations of the genus Odontarrhena are most promising candidates for research on metal tolerance and Ni-agromining, but their genetic structure remains unknown. We investigated phylogenetic relationships and genetic differentiation in relation to distribution and ploidy of the taxa, anthropic site disturbance, elevation, soil type, and trace metals at each population site. After performing DNA sequencing of selected accessions, we applied DNA-fingerprinting to analyze the genetic structure of 32 populations from ultramafic and non-ultramafic outcrops across Albania. Low sequence divergence resulted in poorly resolved phylograms, but supported affinity between the two diploid serpentine endemics O. moravensis and O. rigida. Analysis of molecular variance (AMOVA) revealed significant population differentiation, but no isolation by distance. Among-population variation was higher in polyploids than in diploids, in which genetic distances were lower. Genetic admixing at population and individual level occurred especially in the polyploids O. chalcidica, O. decipiens, and O. smolikana. Admixing increased with site disturbance. Outlier loci were higher in serpentine populations but decreased along altitude with lower drought and heat stress. Genetic variability gained by gene flow and hybridization at contact zones with "resident" species of primary ultramafic habitats promoted expansion of the tetraploid O. chalcidica across anthropogenic sites.

11.
Planta ; 252(6): 99, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33170944

RESUMEN

MAIN CONCLUSION: Odontarrhena is a highly diverse genus of Ni-hyperaccumulators. Here, we demonstrate substantial inability to accumulate Ni in the facultative serpentinophyte O. sibirica, which seems a unique case among the numerous species of the genus that grow on ultramafic soils. Odontarrhena is the most diverse genus of Ni-accumulating plants in W Eurasia, with most taxa growing obligatorily or facultatively on ultramafic soils. A notable exception may be O. sibirica, a facultative serpentinophyte from the E Mediterranean and W Asia in which accumulation ability is still enigmatic. We addressed this issue using observational and experimental methods. Atomic Absorption Analysis of 33 herbarium specimens and plant and soil samples from seven ultramafic and non-ultramafic sites in Greece revealed shoot Ni values always much lower than 1000 µg g-1, non-significant differences between plants from the two soil types and no relationship with soil pH. Only two Turkish specimens from waste mines had shoot Ni concentration > 1000 µg g-1. The reasons for this deviating result remain obscure, but may be associated with inherent peculiarities of the local populations. When cultivated together with congeneric Ni-accumulating species on the same natural ultramafic soil, only O. sibirica was unable to accumulate the metal. Although plant growth was stimulated in hydroponics at relatively low NiSO4 levels (50-150 µM), as typical for hyperaccumulators, Ni-accumulation occurred only at higher concentrations which had a toxic effect. This peculiar combination of Ni-response traits could be the result of a partial evolutionary loss of ability with respect to all other Ni-accumulating congeneric species. For this, O. sibirica could represent a unique model system for further studies on the evolutionary dynamics, physiological mechanisms and genetic control of metal accumulation and homeostasis.


Asunto(s)
Brassicaceae , Níquel , Contaminantes del Suelo , Asia , Brassicaceae/metabolismo , Níquel/metabolismo , Suelo/química , Contaminantes del Suelo/metabolismo
12.
Foods ; 9(5)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429251

RESUMEN

The use of sourdough fermentation and whole grain flours in baked goods manufacturing are known to enhance their functional and nutritional features. In this context, it is necessary to select the most suitable lactic acid bacteria strains and flour combination to achieve this goal. A characterization of 70 lactobacilli strains based on pro-technological and nutritional properties was carried out. The screening allowed the selection of 10 strains that were used to ferment sourdoughs made with two varieties of common wheat, the conventional red-grained cv Aubusson, a blue-grained variety rich in anthocyanins cv Skorpion, and a hull-less barley variety, cv Rondo. From each fermented sourdough, a water soluble extract was obtained and evaluated for its antioxidant activity performed on cultured cells (RAW 264.7 murine macrophage) by assaying Reactive Oxygen Species (ROS) content. Sourdoughs made with pigmented wheat and barley, had an antioxidant activity greater than that recovered in those made with conventional wheat flour, in spite they have been inoculated with the same LAB strains. Results highlighted the interdependence between flour and the inoculated lactic acid bacteria that has to be taken into account for the development of healthy breads exploiting high functional value cereals through biotechnological processes.

13.
Food Chem ; 322: 126710, 2020 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-32283363

RESUMEN

Sourdough fermentation influences several properties of leavened baked goods also because Lactic acid bacteria (LAB) and yeasts produce bioactive peptides with a positive effect on human health. In an early study, three Lactobacilli strains (L. farciminis H3 and A11 and L. sanfranciscensis I4) possessing different proteolytic activities were used to produce sourdoughs containing peptides equipped with anti-inflammatory and/or antioxidant properties. This work was aimed to assess whether these properties could be retained after cooking. The selected LABs were used to produce breads from which low molecular weight (LMW-) peptides were extracted. The results provide solid proofs of keeping both antioxidant and anti-inflammatory activities of peptides from cooked products. Sequences of LMW-peptides either from doughs and breads were determined by mass spectrometry: differences have been noticed in amino acidic composition and in sequences, however, all the strains produce peptides equipped with antioxidant and anti-inflammatory activities.


Asunto(s)
Antiinflamatorios/análisis , Antioxidantes/análisis , Pan/análisis , Pan/microbiología , Lactobacillus/metabolismo , Antiinflamatorios/metabolismo , Antioxidantes/metabolismo , Fermentación , Harina/análisis , Microbiología de Alimentos , Humanos , Péptidos/análisis , Péptidos/metabolismo , Levaduras/metabolismo
14.
Int J Mol Sci ; 20(23)2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31795317

RESUMEN

Cadmium (Cd) is a highly toxic environmental pollutant released from the smelting and refining of metals and cigarette smoking. Oral exposure to cadmium may result in adverse effects on a number of tissues, including the central nervous system (CNS). In fact, its toxicity has been related to neurological disorders, as well as neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Under normal conditions, Cd barely reaches the brain in adults because of the presence of the blood-brain barrier (BBB); however, it has been demonstrated that Cd-dependent BBB alteration contributes to pathogenesis of neurodegeneration. However, the mechanism underlying Cd-dependent BBB alteration remain obscure. Here, we investigated the signaling pathway of Cd-induced tight junction (TJ), F-actin, and vimentin protein disassembly in a rat brain endothelial cell line (RBE4). RBE4 cells treated with 10 µM cadmium chloride (CdCl2) showed a dose- and time-dependent significant increase in reactive oxygen species (ROS) production. This phenomenon was coincident with the alteration of the TJ zonula occludens-1 (ZO-1), F-actin, and vimentin proteins. The Cd-dependent ROS increase elicited the upregulation of GRP78 expression levels, a chaperone involved in endoplasmic reticulum (ER) stress that induces caspase-3 activation. Further signal profiling by the pannexin-1 (PANX1) specific inhibitor 10Panx revealed a PANX1-independent increase in ATP spillage in Cd-treated endothelial cells. Our results point out that a ROS-dependent ER stress-mediated signaling pathway involving caspase-3 activation and ATP release is behind the BBB morphological alterations induced by Cd.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Cadmio/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Actinas/metabolismo , Animales , Barrera Hematoencefálica/citología , Línea Celular , Estrés del Retículo Endoplásmico , Células Endoteliales/citología , Células Endoteliales/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Vimentina/metabolismo
15.
Plant Sci ; 286: 37-48, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31300140

RESUMEN

In this work, a non-metallicolous and a metallicolous population of S. paradoxa were exposed to copper excess and fungal elicitation, and investigated for phytohormone production and cytological alterations. Under the stress applied separately and in combination, S. paradoxa plants varied phytohormone concentration in a population-specific way, suggesting a different signalling in response to biotic and abiotic stimuli according to the environment of origin. Generally, the stress responses consisted in increased levels of salicylic acid, auxin, and gibberellin in the non-metallicolous population, and of jasmonic and abscisic acid in the metallicolous one. Interestingly, the metallicolous population increased the level of such phytohormones following exposure to the fungal elicitor only in the presence of copper. This alternative hormonal signalling could derive from the incompatibility between the ordinary ROS-mediated response to pathogens and the acquired mechanisms that prevent oxidative stress in the population from the metal-rich soil. Furthermore, stress-induced autophagic phenomena were more evident in the non-metallicolous plants than in the metallicolous ones, suggesting that the adaptation to the metalliferous environment has also affected autophagy intensity and signalling in response to copper excess and fungal elicitation.


Asunto(s)
Cobre/efectos adversos , Hongos/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Silene/efectos de los fármacos , Silene/microbiología , Contaminantes del Suelo/efectos adversos , Adaptación Fisiológica , Enfermedades de las Plantas/microbiología , Silene/crecimiento & desarrollo , Silene/metabolismo
16.
Int J Food Microbiol ; 286: 55-65, 2018 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-30036730

RESUMEN

Sourdough fermentation of cereal foods is an excellent source of obtaining peptides due to the ability of lactic acid bacteria to activate cereal proteases and produce strain-specific peptidases. With the aim of identifying the lactic acid bacterial strains potentially most effective in producing bioactive peptides, 131 lactobacilli isolates from Italian sourdoughs, used in baking technology, have been screened for proteolytic and peptidase activity. Of these, 23 strains were selected and singly inoculated in liquid sourdoughs from which a Low Molecular Weight fraction containing peptides was obtained. Evaluation of the antioxidant and anti-inflammatory activities of the extracts was performed on cultured cells (RAW 264.7 murine macrophage, murine H-end endothelium cells and Human intestinal Caco-2 cells) by assaying Reactive Oxygen Species (ROS) content, NFkB/IkB expression level and Interleukin-1ß production. As a result, three lactobacilli strains showed a high antioxidant and anti-inflammatory ability enabling the development of model sourdoughs that will potentially increase the nutritional benefits of bread.


Asunto(s)
Antiinflamatorios/metabolismo , Antioxidantes/metabolismo , Pan/microbiología , Lactobacillus/metabolismo , Péptido Hidrolasas/metabolismo , Animales , Células CACO-2 , Línea Celular , Fermentación , Harina/microbiología , Humanos , Proteínas I-kappa B/biosíntesis , Interleucina-1beta/biosíntesis , Italia , Lactobacillus/clasificación , Lactobacillus/aislamiento & purificación , Ratones , Péptidos/metabolismo , Proteolisis , Células RAW 264.7 , Especies Reactivas de Oxígeno/análisis
17.
PLoS One ; 12(5): e0178337, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28542638

RESUMEN

Cerato-platanin (CP) is a non-catalytic, cysteine-rich protein, the first member of the cerato-platanin family. It is a single-domain protein with a double Ψ/ß barrel domain resembling the D1 domain of plant and bacterial expansins. Similarly to expansins, CP shows a cell wall-loosening activity on cellulose and can be defined as an expanisin-like protein, in spite of the missing D2 domain, normally present in plant expansins. The weakening activity shown on cellulose may facilitate the CP-host interaction, corroborating the role of CP in eliciting plant defence response. Indeed, CP is an elicitor of primary defences acting as a Pathogen-Associated Molecular Patterns (PAMP). So far, structure-function relationship study has been mainly performed on the bacterial BsEXLX1 expansin, probably due to difficulties in expressing plant expansins in heterologous systems. Here, we report a subcloning and purification method of CP in the engineered E. coli SHuffle cells, which proved to be suitable to obtain the properly folded and biologically active protein. The method also enabled the production of the mutant D77A, rationally designed to be inactive. The wild-type and the mutated CP were characterized for cellulose weakening activity and for PAMP activity (i.e. induction of Reactive Oxygen Species synthesis and phytoalexins production). Our analysis reveals that the carboxyl group of D77 is crucial for expansin-like and PAMP activities, thus permitting to establish a correlation between the ability to weaken cellulose and the capacity to induce defence responses in plants. Our results enable the structural and functional characterization of a mono-domain eukaryotic expansin and identify the essential role of a specific aspartic residue in cellulose weakening.


Asunto(s)
Proteínas Fúngicas/genética , Sustitución de Aminoácidos , Celulosa/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/fisiología , Interacciones Huésped-Patógeno/genética , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología
18.
Int J Mol Sci ; 17(6)2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27271595

RESUMEN

Cerato-platanin (CP) is the founder of a fungal protein family consisting in non-catalytic secreted proteins, which work as virulence factors and/or as elicitors of defense responses and systemic resistance, thus acting as PAMPs (pathogen-associated molecular patterns). Moreover, CP has been defined an expansin-like protein showing the ability to weaken cellulose aggregates, like the canonical plant expansins do. Here, we deepen the knowledge on CP PAMP activity by the use of a multi-disciplinary approach: proteomic analysis, VOC (volatile organic compound) measurements, and gas exchange determination. The treatment of Arabidopsis with CP induces a differential profile either in protein expression or in VOC emission, as well changes in photosynthetic activity. In agreement with its role of defense activator, CP treatment induces down-expression of enzymes related to primary metabolism, such as RuBisCO, triosephosphate isomerase, and ATP-synthase, and reduces the photosynthesis rate. Conversely, CP increases expression of defense-related proteins and emission of some VOCs. Interestingly, CP exposure triggered the increase in enzymes involved in GSH metabolism and redox homeostasis (glutathione S-transferase, thioredoxin, Cys-peroxiredoxin, catalase) and in enzymes related to the "glucosinolate-myrosinase" system, which are the premise for synthesis of defence compounds, such as camalexin and some VOCs, respectively. The presented results are in agreement with the accepted role of CP as a PAMP and greatly increase the knowledge of plant primary defences induced by a purified fungal elicitor.


Asunto(s)
Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Plantas/metabolismo , Plantas/microbiología , Resistencia a la Enfermedad , Genómica , Metabolómica , Enfermedades de las Plantas/microbiología , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Compuestos Orgánicos Volátiles/metabolismo
19.
Environ Pollut ; 210: 282-92, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26799504

RESUMEN

We investigated how the adaptation to metalliferous environments can influence the plant response to biotic stress. In a metallicolous and a non-metallicolous population of Silene paradoxa the induction of oxidative stress and the production of callose and volatiles were evaluated in the presence of copper and of the PAMP fungal protein cerato-platanin, separately and in combination. Our results showed incompatibility between the ordinary ROS-mediated response to fungal attack and the acquired mechanisms of preventing oxidative stress in the tolerant population. A similar situation was also demonstrated by the sensitive population growing in the presence of copper but, in this case, with a lack of certain responses, such as callose production. In addition, in terms of the joint behaviour of emitted volatiles, multivariate statistics showed that not only did the populations respond differently to the presence of copper or biotic stress, but also that the biotic and abiotic stresses interacted in different ways in the two populations. Our results demonstrated that the same incompatibility of hyperaccumulators in ROS-mediated biotic stress signals also seemed to be exhibited by the excluder metallophyte, but without the advantage of being able to rely on the elemental defence for plant protection from natural enemies.


Asunto(s)
Cobre/metabolismo , Hongos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Silene/metabolismo , Contaminantes del Suelo/metabolismo , Adaptación Fisiológica , Cobre/toxicidad , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Estrés Oxidativo , Contaminantes del Suelo/toxicidad , Compuestos Orgánicos Volátiles/metabolismo
20.
Plant Sci ; 228: 79-87, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25438788

RESUMEN

Cerato-platanins are an interesting group of small, secreted, cysteine-rich proteins that have been implicated in virulence of certain plant pathogenic fungi. The relatively recent discovery of these proteins in plant beneficial fungi like Trichoderma spp., and their positive role in induction of defense in plants against invading pathogens has raised the question as to whether these proteins are effectors or elicitor molecules. Here we present a comprehensive review on the occurrence of these conserved proteins across the fungal kingdom, their structure-function relationships, and their physiological roles in plant pathogenic and symbiotic fungi. We also discuss the usefulness of these proteins in evolving strategies for crop protection through a transgenic approach or direct application as elicitors.


Asunto(s)
Proteínas Fúngicas/fisiología , Plantas/microbiología , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Control Biológico de Vectores , Relación Estructura-Actividad , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...