Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(7): 4030-4045, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38856657

RESUMEN

Over the past decade, the preparation of novel materials by enzyme-embedding into biopolyesters has been proposed as a straightforward method to produce self-degrading polymers. This paper reports the preparation and enzymatic degradation of extruded self-degradable films of three different biopolyesters: poly(lactic acid) (PLA), poly(butylene adipate-co-terephthalate) (PBAT), and poly(butylene succinate) (PBS), as well as three binary/ternary blends. Candida antarctica lipase B (CalB) has been employed for the enzyme-embedding procedure, and to the best of our knowledge, the use of this approach in biopolyester blends has not been reported before. The three homopolymers exhibited differentiated degradation and suggested a preferential attack of CalB on PBS films over PBAT and PLA. Moreover, the self-degradable films obtained from the blends showed slow degradation, probably due to the higher content in PLA and PBAT. These observations pave the way for exploring enzymes capable of degrading all blend components or an enzymatic mixture for blend degradation.


Asunto(s)
Proteínas Fúngicas , Lipasa , Poliésteres , Lipasa/química , Lipasa/metabolismo , Poliésteres/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Polímeros/química , Ácido Láctico/química , Enzimas Inmovilizadas/química , Butileno Glicoles
2.
Macromolecules ; 57(10): 4906-4917, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38827961

RESUMEN

The chain architecture and topology of macromolecules impact their physical properties and final performance, including their crystallization process. In this work, comb polymers constituted by poly(ethylene glycol), PEG, side chains, and a dithiol-yne-based ring polymer backbone have been studied, focusing on the micro- and nanostructures of the system, thermal behavior, and crystallization kinetics. The designed comb system allows us to investigate the role of a ring backbone, the impact of varying the distance between two neighboring side chains, and the effect of the molecular weight of the side chain. The results reflect that the governing factor in the crystalline properties is the molar mass of the side chains and that the tethering of PEG chains to the ring backbone brings important constraints to the crystallization process, reducing the crystallinity degree and slowing down the crystallization kinetics in comparison to analogue PEG homopolymers. We demonstrate that the effect of spatial hindrance in the comb-like PEG polymers drives the morphology toward highly ordered, self-assembled, semicrystalline superstructures with either extended interdigitated chain crystals or novel (for comb polymers) interdigitated folded chain lamellar crystals. These structures depend on PEG molecular weight, the distance between neighboring tethered PEG chains, and the crystallization conditions (nonisothermal versus isothermal). This work sheds light on the role of chain architecture and topology in the structure of comb-like semicrystalline polymers.

3.
Nanoscale ; 16(20): 9887-9898, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38683577

RESUMEN

Delving into the mechanism behind the molecular interactions at the atomic level of short-sequence peptides plays a key role in the development of nanomaterials with specific structure-property-function relationships from a bottom-up perspective. Due to their poor water solubility, the self-assembly of Fmoc-bearing peptides is usually induced by dissolution in an organic solvent, followed by a dilution step in water, pH changes, and/or a heating-cooling process. Herein, we report a straightforward methodology for the gelation of Fmoc-FFpY (F: phenylalanine; Y: tyrosine; and p: PO42-), a negatively charged tripeptide, in NaCl solution. The electrostatic interactions between Fmoc-FFpY and Na+ ions give rise to different nanofibrillar hydrogels with rheological properties and nanofiber sizes modulated by the NaCl concentration in pure aqueous media. Initiated by the electrostatic interactions between the peptide phosphate groups and the Na+ ions, the peptide self-assembly is stabilized thanks to hydrogen bonds between the peptide backbones and the π-π stacking of aromatic Fmoc and phenyl units. The hydrogels showed self-healing and thermo-responsive properties for potential biomedical applications. Molecular dynamics simulations from systems devoid of prior training not only confirm the aggregation of peptides at a critical salt concentration and the different interactions involved, but also corroborate the secondary structure of the hydrogels at the microsecond timescale. It is worth highlighting the remarkable achievement of reproducing the morphological behavior of the hydrogels using atomistic simulations. To our knowledge, this study is the first to report such a correspondence.

4.
Polymers (Basel) ; 14(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35267848

RESUMEN

The impact of plastics on the environment can be mitigated by employing biobased and/or biodegradable materials (i.e., bioplastics) instead of the traditional "commodities". In this context, poly (butylene succinate) (PBS) emerges as one of the most promising alternatives due to its good mechanical, thermal, and barrier properties, making it suitable for use in a wide range of applications. Still, the PBS has some drawbacks, such as its high crystallinity, which must be overcome to position it as a real and viable alternative to "commodities". This contribution covers the actual state-of-the-art of the PBS through different sections. The first section reviews the different synthesis routes, providing a complete picture regarding the obtained molecular weights and the greener alternatives. Afterward, we examine how different strategies such as random copolymerization and the incorporation of fillers can effectively modulate PBS properties to satisfy the needs for different applications. The impact of these strategies is evaluated in the crystallization behavior, crystallinity, mechanical and barrier properties, and biodegradation. The biodegradation is carefully analyzed, highlighting the wide variety of methodologies existing in the literature to measure PBS degradation through different routes (hydrolytic, enzymatic, and soil).

5.
Polymers (Basel) ; 12(9)2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932625

RESUMEN

New auto-plasticised copolymers of poly(vinyl chloride)-r-(acrylate) and polyvinylchloride, obtained by radical polymerization, are investigated to analyse their capacity to be processed by 3D printing. The specific microstructure of the copolymers gives rise to a phase-separated morphology constituted by poly(vinyl chloride) (PVC) domains dispersed in a continuous phase of acrylate-vinyl chloride copolymer. The analysis of the rheological results allows the suitability of these copolymers to be assessed for use in a screw-driven 3D printer, but not by the fused filament fabrication method. This is due to the high melt elasticity of the copolymers, caused by interfacial tension between phases. A relationship between the relaxation modulus of the copolymers and the interlayer adhesion is established. Under adequate 3D-printing conditions, flexible and ductile samples with good dimensional stability and cohesion are obtained, as is proven by scanning electron microscopy (SEM) and tensile stress-strain tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA