Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Med ; 30(7): 1982-1993, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38783139

RESUMEN

Hematopoietic cell transplantation (HCT) uses cytotoxic chemotherapy and/or radiation followed by intravenous infusion of stem cells to cure malignancies, bone marrow failure and inborn errors of immunity, hemoglobin and metabolism. Lung injury is a known complication of the process, due in part to disruption in the pulmonary microenvironment by insults such as infection, alloreactive inflammation and cellular toxicity. How microorganisms, immunity and the respiratory epithelium interact to contribute to lung injury is uncertain, limiting the development of prevention and treatment strategies. Here we used 278 bronchoalveolar lavage (BAL) fluid samples to study the lung microenvironment in 229 pediatric patients who have undergone HCT treated at 32 children's hospitals between 2014 and 2022. By leveraging paired microbiome and human gene expression data, we identified high-risk BAL compositions associated with in-hospital mortality (P = 0.007). Disadvantageous profiles included bacterial overgrowth with neutrophilic inflammation, microbiome contraction with epithelial fibroproliferation and profound commensal depletion with viral and staphylococcal enrichment, lymphocytic activation and cellular injury, and were replicated in an independent cohort from the Netherlands (P = 0.022). In addition, a broad array of previously occult pathogens was identified, as well as a strong link between antibiotic exposure, commensal bacterial depletion and enrichment of viruses and fungi. Together these lung-immune system-microorganism interactions clarify the important drivers of fatal lung injury in pediatric patients who have undergone HCT. Further investigation is needed to determine how personalized interpretation of heterogeneous pulmonary microenvironments may be used to improve pediatric HCT outcomes.


Asunto(s)
Líquido del Lavado Bronquioalveolar , Disbiosis , Trasplante de Células Madre Hematopoyéticas , Lesión Pulmonar , Humanos , Niño , Femenino , Lesión Pulmonar/patología , Lesión Pulmonar/microbiología , Masculino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Preescolar , Adolescente , Líquido del Lavado Bronquioalveolar/microbiología , Disbiosis/microbiología , Disbiosis/inmunología , Microbiota , Lactante , Pulmón/patología , Pulmón/microbiología , Pulmón/inmunología
2.
medRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38077035

RESUMEN

Lung injury is a major determinant of survival after pediatric hematopoietic cell transplantation (HCT). A deeper understanding of the relationship between pulmonary microbes, immunity, and the lung epithelium is needed to improve outcomes. In this multicenter study, we collected 278 bronchoalveolar lavage (BAL) samples from 229 patients treated at 32 children's hospitals between 2014-2022. Using paired metatranscriptomes and human gene expression data, we identified 4 patient clusters with varying BAL composition. Among those requiring respiratory support prior to sampling, in-hospital mortality varied from 22-60% depending on the cluster (p=0.007). The most common patient subtype, Cluster 1, showed a moderate quantity and high diversity of commensal microbes with robust metabolic activity, low rates of infection, gene expression indicating alveolar macrophage predominance, and low mortality. The second most common cluster showed a very high burden of airway microbes, gene expression enriched for neutrophil signaling, frequent bacterial infections, and moderate mortality. Cluster 3 showed significant depletion of commensal microbes, a loss of biodiversity, gene expression indicative of fibroproliferative pathways, increased viral and fungal pathogens, and high mortality. Finally, Cluster 4 showed profound microbiome depletion with enrichment of Staphylococci and viruses, gene expression driven by lymphocyte activation and cellular injury, and the highest mortality. BAL clusters were modeled with a random forest classifier and reproduced in a geographically distinct validation cohort of 57 patients from The Netherlands, recapitulating similar cluster-based mortality differences (p=0.022). Degree of antibiotic exposure was strongly associated with depletion of BAL microbes and enrichment of fungi. Potential pathogens were parsed from all detected microbes by analyzing each BAL microbe relative to the overall microbiome composition, which yielded increased sensitivity for numerous previously occult pathogens. These findings support personalized interpretation of the pulmonary microenvironment in pediatric HCT, which may facilitate biology-targeted interventions to improve outcomes.

3.
Front Microbiol ; 11: 1022, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32523572

RESUMEN

Rhodococcus is a genus of Gram-positive bacteria with species that can cause growth deformations to a large number of plant species. This ability to cause disease is hypothesized to be dependent on a cluster of three gene loci on an almost 200 kb-sized linear plasmid. To reevaluate the roles of some of the genes in pathogenicity, we constructed and characterized deletion mutants of fasR and four fas genes. Findings confirmed that fasR, which encodes a putative transcriptional regulator, is necessary for pathogenesis. However, three of the fas genes, implicated in the metabolism of plant growth promoting cytokinins, are dispensable for the ability of the pathogen to cause disease. We also used long-read sequencing technology to generate high quality genome sequences for two phytopathogenic strains in which virulence genes are diverged in sequence and/or hypothesized to have recombined into the chromosome. Surprisingly, findings showed that the two strains carry extremely diverse virulence plasmids. Ortholog clustering identified only 12 genes present on all three virulence plasmids. Rhodococcus requires a small number of horizontally acquired traits to be pathogenic and the transmission of the corresponding genes, via recombination and conjugation, has the potential to rapidly diversify plasmids and bacterial populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA