Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(2): 891-907, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36629253

RESUMEN

The synthesis of mitochondrial OXPHOS complexes is central to cellular metabolism, yet many molecular details of mitochondrial translation remain elusive. It has been commonly held view that translation initiation in human mitochondria proceeded in a manner similar to bacterial systems, with the mitoribosomal small subunit bound to the initiation factors, mtIF2 and mtIF3, along with initiator tRNA and an mRNA. However, unlike in bacteria, most human mitochondrial mRNAs lack 5' leader sequences that can mediate small subunit binding, raising the question of how leaderless mRNAs are recognized by mitoribosomes. By using novel in vitro mitochondrial translation initiation assays, alongside biochemical and genetic characterization of cellular knockouts of mitochondrial translation factors, we describe unique features of translation initiation in human mitochondria. We show that in vitro, leaderless mRNA transcripts can be loaded directly onto assembled 55S mitoribosomes, but not onto the mitoribosomal small subunit (28S), in a manner that requires initiator fMet-tRNAMet binding. In addition, we demonstrate that in human cells and in vitro, mtIF3 activity is not required for translation of leaderless mitochondrial transcripts but is essential for translation of ATP6 in the case of the bicistronic ATP8/ATP6 transcript. Furthermore, we show that mtIF2 is indispensable for mitochondrial protein synthesis. Our results demonstrate an important evolutionary divergence of the mitochondrial translation system and further our fundamental understanding of a process central to eukaryotic metabolism.


Asunto(s)
Mitocondrias , Iniciación de la Cadena Peptídica Traduccional , Animales , Humanos , Bacterias/genética , Mamíferos/genética , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factores de Iniciación de Péptidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Nat Commun ; 13(1): 5750, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180430

RESUMEN

Canonical RNA processing in mammalian mitochondria is defined by tRNAs acting as recognition sites for nucleases to release flanking transcripts. The relevant factors, their structures, and mechanism are well described, but not all mitochondrial transcripts are punctuated by tRNAs, and their mode of processing has remained unsolved. Using Drosophila and mouse models, we demonstrate that non-canonical processing results in the formation of 3' phosphates, and that phosphatase activity by the carbon catabolite repressor 4 domain-containing family member ANGEL2 is required for their hydrolysis. Furthermore, our data suggest that members of the FAST kinase domain-containing protein family are responsible for these 3' phosphates. Our results therefore propose a mechanism for non-canonical RNA processing in metazoan mitochondria, by identifying the role of ANGEL2.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN , Animales , Carbono/metabolismo , Drosophila , Exorribonucleasas , Mamíferos/genética , Ratones , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , ARN/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia/metabolismo
3.
RNA Biol ; 18(7): 1063-1084, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33499699

RESUMEN

Single-cell RNA-sequencing (scRNA-seq) has emerged in recent years as a breakthrough technology to understand RNA metabolism at cellular resolution. In addition to allowing new cell types and states to be identified, scRNA-seq can permit cell-type specific differential gene expression changes, pre-mRNA processing events, gene regulatory networks and single-cell developmental trajectories to be uncovered. More recently, a new wave of multi-omic adaptations and complementary spatial transcriptomics workflows have been developed that facilitate the collection of even more holistic information from individual cells. These developments have unprecedented potential to provide penetrating new insights into the basic neural cell dynamics and molecular mechanisms relevant to the nervous system in both health and disease. In this review we discuss this maturation of single-cell RNA-sequencing over the past decade, and review the different adaptations of the technology that can now be applied both at different scales and for different purposes. We conclude by highlighting how these methods have already led to many exciting discoveries across neuroscience that have furthered our cellular understanding of the neurological disease.


Asunto(s)
Encéfalo/metabolismo , Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/genética , Trastornos del Neurodesarrollo/genética , Neuronas/metabolismo , ARN Mensajero/genética , Análisis de la Célula Individual/métodos , Animales , Encéfalo/patología , Biología Computacional/métodos , Código de Barras del ADN Taxonómico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Neuronas/patología , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma
4.
Nucleic Acids Res ; 49(1): 354-370, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33283228

RESUMEN

Human mitoribosomes are macromolecular complexes essential for translation of 11 mitochondrial mRNAs. The large and the small mitoribosomal subunits undergo a multistep maturation process that requires the involvement of several factors. Among these factors, GTP-binding proteins (GTPBPs) play an important role as GTP hydrolysis can provide energy throughout the assembly stages. In bacteria, many GTPBPs are needed for the maturation of ribosome subunits and, of particular interest for this study, ObgE has been shown to assist in the 50S subunit assembly. Here, we characterize the role of a related human Obg-family member, GTPBP5. We show that GTPBP5 interacts specifically with the large mitoribosomal subunit (mt-LSU) proteins and several late-stage mitoribosome assembly factors, including MTERF4:NSUN4 complex, MRM2 methyltransferase, MALSU1 and MTG1. Interestingly, we find that interaction of GTPBP5 with the mt-LSU is compromised in the presence of a non-hydrolysable analogue of GTP, implying a different mechanism of action of this protein in contrast to that of other Obg-family GTPBPs. GTPBP5 ablation leads to severe impairment in the oxidative phosphorylation system, concurrent with a decrease in mitochondrial translation and reduced monosome formation. Overall, our data indicate an important role of GTPBP5 in mitochondrial function and suggest its involvement in the late-stage of mt-LSU maturation.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Proteínas de Unión al GTP Monoméricas/fisiología , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Neoplasias Óseas/patología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Osteosarcoma/patología , Fosforilación Oxidativa , Mapeo de Interacción de Proteínas
5.
Methods Mol Biol ; 2192: 183-196, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33230774

RESUMEN

Ribosome profiling (Ribo-Seq) is a technique that allows genome-wide, quantitative analysis of translation. In recent years, it has found multiple applications in studies of translation in diverse organisms, tracking protein synthesis with single codon resolution. Traditional protocols applied for generating Ribo-Seq libraries from mammalian cell cultures are not suitable to study mitochondrial translation due to differences between eukaryotic cytosolic and mitochondrial ribosomes. Here, we present an adapted protocol enriching for mitoribosome footprints. In addition, we describe the preparation of small RNA sequencing libraries from the resultant mitochondrial ribosomal protected fragments (mtRPFs).


Asunto(s)
Perfilación de la Expresión Génica/métodos , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas/genética , Transcriptoma , Secuencia de Bases , Técnicas de Cultivo de Célula , Codón/metabolismo , Células HEK293 , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
6.
EMBO J ; 39(23): e105364, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33128823

RESUMEN

Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6-months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation; however, only ~ 1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. Our transcriptomic and proteomic analysis of patient muscle suggests a stepwise mechanism where first, the integrated stress response associated with increased FGF21 and GDF15 expression enhances the metabolism modulated by serine biosynthesis, one carbon metabolism, TCA lipid oxidation and amino acid availability, while in the second step mTOR activation leads to increased mitochondrial biogenesis. Our data suggest that the spontaneous recovery in infants with digenic mutations may be modulated by the above described changes. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease.


Asunto(s)
Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/metabolismo , Adolescente , Línea Celular , ADN Mitocondrial/genética , Femenino , Expresión Génica , Humanos , Lactante , Masculino , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Linaje , Proteómica , Músculo Cuádriceps/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
7.
Cell Rep ; 29(6): 1728-1738.e9, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31693908

RESUMEN

Mitochondria harbor specialized ribosomes (mitoribosomes) necessary for the synthesis of key membrane proteins of the oxidative phosphorylation (OXPHOS) machinery located in the mitochondrial inner membrane. To date, no animal model exists to study mitoribosome composition and mitochondrial translation coordination in mammals in vivo. Here, we create MitoRibo-Tag mice as a tool enabling affinity purification and proteomics analyses of mitoribosomes and their interactome in different tissues. We also define the composition of an assembly intermediate formed in the absence of MTERF4, necessary for a late step in mitoribosomal biogenesis. We identify the orphan protein PUSL1, which interacts with a large subunit assembly intermediate, and demonstrate that it is an inner-membrane-associated mitochondrial matrix protein required for efficient mitochondrial translation. This work establishes MitoRibo-Tag mice as a powerful tool to study mitoribosomes in vivo, enabling future studies on the mitoribosome interactome under different physiological states, as well as in disease and aging.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Corazón/fisiología , Riñón/metabolismo , Hígado/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Miocardio/metabolismo , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Proteómica , Proteínas Ribosómicas/genética , Factores de Transcripción/genética
8.
Nucleic Acids Res ; 47(17): 9386-9399, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31396629

RESUMEN

In all biological systems, RNAs are associated with RNA-binding proteins (RBPs), forming complexes that control gene regulatory mechanisms, from RNA synthesis to decay. In mammalian mitochondria, post-transcriptional regulation of gene expression is conducted by mitochondrial RBPs (mt-RBPs) at various stages of mt-RNA metabolism, including polycistronic transcript production, its processing into individual transcripts, mt-RNA modifications, stability, translation and degradation. To date, only a handful of mt-RBPs have been characterized. Here, we describe a putative human mitochondrial protein, C6orf203, that contains an S4-like domain-an evolutionarily conserved RNA-binding domain previously identified in proteins involved in translation. Our data show C6orf203 to bind highly structured RNA in vitro and associate with the mitoribosomal large subunit in HEK293T cells. Knockout of C6orf203 leads to a decrease in mitochondrial translation and consequent OXPHOS deficiency, without affecting mitochondrial RNA levels. Although mitoribosome stability is not affected in C6orf203-depleted cells, mitoribosome profiling analysis revealed a global disruption of the association of mt-mRNAs with the mitoribosome, suggesting that C6orf203 may be required for the proper maturation and functioning of the mitoribosome. We therefore propose C6orf203 to be a novel RNA-binding protein involved in mitochondrial translation, expanding the repertoire of factors engaged in this process.


Asunto(s)
Mitocondrias/genética , Proteínas Mitocondriales/biosíntesis , ARN Mitocondrial/genética , Proteínas de Unión al ARN/genética , Animales , Células HEK293 , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Ribosomas Mitocondriales/metabolismo , ARN Mensajero/genética , ARN Ribosómico/genética , Proteínas de Unión al ARN/fisiología
9.
Elife ; 62017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28745585

RESUMEN

Human mitochondria contain a genome (mtDNA) that encodes essential subunits of the oxidative phosphorylation system. Expression of mtDNA entails multi-step maturation of precursor RNA. In other systems, the RNA life cycle involves surveillance mechanisms, however, the details of RNA quality control have not been extensively characterised in human mitochondria. Using a mitochondrial ribosome profiling and mitochondrial poly(A)-tail RNA sequencing (MPAT-Seq) assay, we identify the poly(A)-specific exoribonuclease PDE12 as a major factor for the quality control of mitochondrial non-coding RNAs. The lack of PDE12 results in a spurious polyadenylation of the 3' ends of the mitochondrial (mt-) rRNA and mt-tRNA. While the aberrant adenylation of 16S mt-rRNA did not affect the integrity of the mitoribosome, spurious poly(A) additions to mt-tRNA led to reduced levels of aminoacylated pool of certain mt-tRNAs and mitoribosome stalling at the corresponding codons. Therefore, our data uncover a new, deadenylation-dependent mtRNA maturation pathway in human mitochondria.


Asunto(s)
Mitocondrias/genética , Poli A/genética , Poliadenilación , ARN Mensajero/genética , ARN Ribosómico/genética , ARN de Transferencia/genética , ARN/genética , Exorribonucleasas/metabolismo , Células HEK293 , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Fosforilación Oxidativa , ARN/metabolismo , ARN Mensajero/metabolismo , ARN Mitocondrial , ARN Ribosómico/metabolismo , ARN de Transferencia/metabolismo
10.
Trends Biochem Sci ; 42(8): 625-639, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28285835

RESUMEN

Perturbation of mitochondrial DNA (mtDNA) gene expression can lead to human pathologies. Therefore, a greater appreciation of the basic mechanisms of mitochondrial gene expression is desirable to understand the pathophysiology of associated disorders. Although the purpose of the mitochondrial gene expression machinery is to provide only 13 proteins of the oxidative phosphorylation (OxPhos) system, recent studies have revealed its remarkable and unexpected complexity. We review here the latest breakthroughs in our understanding of the post-transcriptional processes of mitochondrial gene expression, focusing on advances in analyzing the mitochondrial epitranscriptome, the role of mitochondrial RNA granules (MRGs), the benefits of recently obtained structures of the mitochondrial ribosome, and the coordination of mitochondrial and cytosolic translation to orchestrate the biogenesis of OxPhos complexes.


Asunto(s)
Regulación de la Expresión Génica/genética , Genes Mitocondriales/genética , Mitocondrias/genética , Ribosomas Mitocondriales/metabolismo , Fosforilación Oxidativa , Animales , Humanos , Mitocondrias/metabolismo , Ribosomas Mitocondriales/química , Procesamiento Postranscripcional del ARN/genética
11.
Nat Commun ; 7: 12039, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27356879

RESUMEN

Epitranscriptome modifications are required for structure and function of RNA and defects in these pathways have been associated with human disease. Here we identify the RNA target for the previously uncharacterized 5-methylcytosine (m(5)C) methyltransferase NSun3 and link m(5)C RNA modifications with energy metabolism. Using whole-exome sequencing, we identified loss-of-function mutations in NSUN3 in a patient presenting with combined mitochondrial respiratory chain complex deficiency. Patient-derived fibroblasts exhibit severe defects in mitochondrial translation that can be rescued by exogenous expression of NSun3. We show that NSun3 is required for deposition of m(5)C at the anticodon loop in the mitochondrially encoded transfer RNA methionine (mt-tRNA(Met)). Further, we demonstrate that m(5)C deficiency in mt-tRNA(Met) results in the lack of 5-formylcytosine (f(5)C) at the same tRNA position. Our findings demonstrate that NSUN3 is necessary for efficient mitochondrial translation and reveal that f(5)C in human mitochondrial RNA is generated by oxidative processing of m(5)C.


Asunto(s)
Regulación de la Expresión Génica , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , ARN de Transferencia/metabolismo , Células HEK293 , Células HeLa , Humanos , Metilación , Metiltransferasas/genética , Mutación
12.
J Inherit Metab Dis ; 38(4): 655-80, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26016801

RESUMEN

Mitochondrial respiratory chain deficiencies exhibit a wide spectrum of clinical presentations owing to defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mitochondrial DNA (mtDNA) or mutations in nuclear genes coding for mitochondrially-targeted proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial biology including expression of mtDNA-encoded genes. Expression of the mitochondrial genes is extensively regulated at the post-transcriptional stage and entails nucleolytic cleavage of precursor RNAs, RNA nucleotide modifications, RNA polyadenylation, RNA quality and stability control. These processes ensure proper mitochondrial RNA (mtRNA) function, and are regulated by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes, leading to incorrect maturation of RNAs, are a cause of human mitochondrial disease. Additionally, mutations in mtDNA-encoded genes may also affect RNA maturation and are frequently associated with human disease. We review the current knowledge on a subset of nuclear-encoded genes coding for proteins involved in mitochondrial RNA maturation, for which genetic variants impacting upon mitochondrial pathophysiology have been reported. Also, primary pathological mtDNA mutations with recognised effects upon RNA processing are described.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , ADN Mitocondrial/metabolismo , Humanos , Enfermedades Mitocondriales/genética , ARN/biosíntesis , ARN/genética
13.
Hum Mutat ; 36(2): 222-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25385316

RESUMEN

A homozygous missense mutation (c.822G>C) was found in the gene encoding the mitochondrial asparaginyl-tRNA synthetase (NARS2) in two siblings born to consanguineous parents. These siblings presented with different phenotypes: one had mild intellectual disability and epilepsy in childhood, whereas the other had severe myopathy. Biochemical analysis of the oxidative phosphorylation (OXPHOS) complexes in both siblings revealed a combined complex I and IV deficiency in skeletal muscle. In-gel activity staining after blue native-polyacrylamide gel electrophoresis confirmed the decreased activity of complex I and IV, and, in addition, showed the presence of complex V subcomplexes. Considering the consanguineous descent, homozygosity mapping and whole-exome sequencing were combined revealing the presence of one single missense mutation in the shared homozygous region. The c.822G>C variant affects the 3' splice site of exon 7, leading to skipping of the whole exon 7 and a part of exon 8 in the NARS2 mRNA. In EBV-transformed lymphoblasts, a specific decrease in the amount of charged mt-tRNA(Asn) was demonstrated as compared with controls. This confirmed the pathogenic nature of the variant. To conclude, the reported variant in NARS2 results in a combined OXPHOS complex deficiency involving complex I and IV, making NARS2 a new member of disease-associated aaRS2.


Asunto(s)
Aspartato-ARNt Ligasa/genética , Mutación Missense , Adulto , Aspartato-ARNt Ligasa/metabolismo , Secuencia de Bases , Células Cultivadas , Consanguinidad , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Homocigoto , Humanos , Masculino , Enfermedades Musculares/genética , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sitios de Empalme de ARN
14.
Am J Hum Genet ; 95(6): 708-20, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25434004

RESUMEN

Respiratory chain deficiencies exhibit a wide variety of clinical phenotypes resulting from defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mtDNA or mutations in nuclear genes coding for mitochondrial proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial physiology. By whole-exome and candidate gene sequencing, we identified 11 individuals from 9 families carrying compound heterozygous or homozygous mutations in GTPBP3, encoding the mitochondrial GTP-binding protein 3. Affected individuals from eight out of nine families presented with combined respiratory chain complex deficiencies in skeletal muscle. Mutations in GTPBP3 are associated with a severe mitochondrial translation defect, consistent with the predicted function of the protein in catalyzing the formation of 5-taurinomethyluridine (τm(5)U) in the anticodon wobble position of five mitochondrial tRNAs. All case subjects presented with lactic acidosis and nine developed hypertrophic cardiomyopathy. In contrast to individuals with mutations in MTO1, the protein product of which is predicted to participate in the generation of the same modification, most individuals with GTPBP3 mutations developed neurological symptoms and MRI involvement of thalamus, putamen, and brainstem resembling Leigh syndrome. Our study of a mitochondrial translation disorder points toward the importance of posttranscriptional modification of mitochondrial tRNAs for proper mitochondrial function.


Asunto(s)
Acidosis Láctica/genética , Encefalopatías/genética , Cardiomiopatía Hipertrófica/genética , Proteínas de Unión al GTP/genética , Procesamiento Proteico-Postraduccional , Acidosis Láctica/fisiopatología , Secuencia de Aminoácidos , Encéfalo/patología , Encefalopatías/fisiopatología , Cardiomiopatía Hipertrófica/fisiopatología , Línea Celular , Niño , Preescolar , Consanguinidad , Femenino , Fibroblastos , Proteínas de Unión al GTP/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Datos de Secuencia Molecular , Mutación , Linaje , Biosíntesis de Proteínas , Interferencia de ARN , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Alineación de Secuencia
15.
Mol Biol Cell ; 25(17): 2542-55, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25009282

RESUMEN

Defects of the translation apparatus in human mitochondria are known to cause disease, yet details of how protein synthesis is regulated in this organelle remain to be unveiled. Ribosome production in all organisms studied thus far entails a complex, multistep pathway involving a number of auxiliary factors. This includes several RNA processing and modification steps required for correct rRNA maturation. Little is known about the maturation of human mitochondrial 16S rRNA and its role in biogenesis of the mitoribosome. Here we investigate two methyltransferases, MRM2 (also known as RRMJ2, encoded by FTSJ2) and MRM3 (also known as RMTL1, encoded by RNMTL1), that are responsible for modification of nucleotides of the 16S rRNA A-loop, an essential component of the peptidyl transferase center. Our studies show that inactivation of MRM2 or MRM3 in human cells by RNA interference results in respiratory incompetence as a consequence of diminished mitochondrial translation. Ineffective translation in MRM2- and MRM3-depleted cells results from aberrant assembly of the large subunit of the mitochondrial ribosome (mt-LSU). Our findings show that MRM2 and MRM3 are human mitochondrial methyltransferases involved in the modification of 16S rRNA and are important factors for the biogenesis and function of the large subunit of the mitochondrial ribosome.


Asunto(s)
Metiltransferasas/fisiología , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/fisiología , ARN Ribosómico 16S/metabolismo , Humanos , Metiltransferasas/análisis , Metiltransferasas/genética , Mitocondrias/metabolismo , Proteínas Nucleares/análisis , Proteínas Nucleares/genética , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , Interferencia de ARN , Procesamiento Postranscripcional del ARN , ARN Ribosómico 16S/química , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
16.
Nucleic Acids Res ; 42(13): 8500-15, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24948607

RESUMEN

MPV17 is a mitochondrial protein of unknown function, and mutations in MPV17 are associated with mitochondrial deoxyribonucleic acid (DNA) maintenance disorders. Here we investigated its most similar relative, MPV17L2, which is also annotated as a mitochondrial protein. Mitochondrial fractionation analyses demonstrate MPV17L2 is an integral inner membrane protein, like MPV17. However, unlike MPV17, MPV17L2 is dependent on mitochondrial DNA, as it is absent from ρ(0) cells, and co-sediments on sucrose gradients with the large subunit of the mitochondrial ribosome and the monosome. Gene silencing of MPV17L2 results in marked decreases in the monosome and both subunits of the mitochondrial ribosome, leading to impaired protein synthesis in the mitochondria. Depletion of MPV17L2 also induces mitochondrial DNA aggregation. The DNA and ribosome phenotypes are linked, as in the absence of MPV17L2 proteins of the small subunit of the mitochondrial ribosome are trapped in the enlarged nucleoids, in contrast to a component of the large subunit. These findings suggest MPV17L2 contributes to the biogenesis of the mitochondrial ribosome, uniting the two subunits to create the translationally competent monosome, and provide evidence that assembly of the small subunit of the mitochondrial ribosome occurs at the nucleoid.


Asunto(s)
Proteínas de la Membrana/fisiología , Mitocondrias/genética , Proteínas Mitocondriales/fisiología , Ribosomas/metabolismo , Silenciador del Gen , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/química , Proteínas Mitocondriales/clasificación , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Dilatación Mitocondrial , Biosíntesis de Proteínas , Subunidades Ribosómicas Grandes de Eucariotas/química
17.
PLoS One ; 9(4): e93597, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24718614

RESUMEN

Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared towards the production and preservation of amino acids when cells are deprived of an exogenous supply. On the contrary, we find that human cells respond to amino acid starvation by upregulating the amino acid-consuming processes of respiration, protein synthesis, and amino acid catabolism in the mitochondria. The increased utilization of these nutrients in the organelle is not driven primarily by energy demand, as it occurs when glucose is plentiful. Instead it is proposed that the changes in the mitochondrial metabolism complement the repression of cytosolic protein synthesis to restrict cell growth and proliferation when amino acids are limiting. Therefore, stimulating mitochondrial function might offer a means of inhibiting nutrient-demanding anabolism that drives cellular proliferation.


Asunto(s)
Aminoácidos/deficiencia , Citosol/metabolismo , Mitocondrias/metabolismo , Biosíntesis de Proteínas , Aminoácidos/metabolismo , Respiración de la Célula , Células HEK293 , Humanos , Potencial de la Membrana Mitocondrial , Proteínas Mitocondriales/biosíntesis , Recambio Mitocondrial , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...