Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Sci Adv ; 10(14): eadl5012, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38569033

The ß-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the global COVID-19 pandemic. Coronaviral Envelope (E) proteins are pentameric viroporins that play essential roles in assembly, release, and pathogenesis. We developed a nondisruptive tagging strategy for SARS-CoV-2 E and find that, at steady state, it localizes to the Golgi and to lysosomes. We identify sequences in E, conserved across Coronaviridae, responsible for endoplasmic reticulum-to-Golgi export, and relate this activity to interaction with COP-II via SEC24. Using proximity biotinylation, we identify an ADP ribosylation factor 1/adaptor protein-1 (ARFRP1/AP-1)-dependent pathway allowing Golgi-to-lysosome trafficking of E. We identify sequences in E that bind AP-1, are conserved across ß-coronaviruses, and allow E to be trafficked from Golgi to lysosomes. We show that E acts to deacidify lysosomes and, by developing a trans-complementation assay for SARS-CoV-2 structural proteins, that lysosomal delivery of E and its viroporin activity is necessary for efficient viral replication and release.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Viral Envelope Proteins/metabolism , Transcription Factor AP-1/metabolism , Pandemics , Virus Replication , Lysosomes/metabolism , ADP-Ribosylation Factors/metabolism
...