Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pediatr Res ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942888

RESUMEN

BACKGROUND: Preterm white matter injury (PWMI) is the most common cause of brain injury in premature neonates. PWMI involves a differentiation arrest of oligodendrocytes, the myelinating cells of the central nervous system. Clemastine was previously shown to induce oligodendrocyte differentiation and myelination in mouse models of PWMI at a dose of 10 mg/kg/day. The minimum effective dose (MED) of clemastine is unknown. Identification of the MED is essential for maximizing safety and efficacy in neonatal clinical trials. We hypothesized that the MED in neonatal mice is lower than 10 mg/kg/day. METHODS: Mouse pups were exposed to normoxia or hypoxia (10% FiO2) from postnatal day 3 (P3) through P10. Vehicle or clemastine at one of four doses (0.5, 2, 7.5 or 10 mg/kg/day) was given to hypoxia-exposed pups. Myelination was assessed at age P14 and 10 weeks to determine the MED. Clemastine pharmacokinetics were evaluated at steady-state on day 8 of treatment. RESULTS: Clemastine rescued hypoxia-induced hypomyelination with a MED of 7.5 mg/kg/day. Pharmacokinetic analysis of the MED revealed Cmax 44.0 ng/mL, t1/2 4.6 h, and AUC24 280.1 ng*hr/mL. CONCLUSIONS: Based on these results, myelination-promoting exposures should be achievable with oral doses of clemastine in neonates with PWMI. IMPACT: Preterm white matter injury (PWMI) is the most common cause of brain injury and cerebral palsy in premature neonates. Clemastine, an FDA-approved antihistamine, was recently identified to strongly promote myelination in a mouse model of PWMI and is a possible treatment. The minimum effective dose in neonatal rodents is unknown and is critical for guiding dose selection and balancing efficacy with toxicity in future clinical trials. We identified the minimum effective dose of clemastine and the associated pharmacokinetics in a murine chronic hypoxia model of PWMI, paving the way for a future clinical trial in human neonates.

2.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38464078

RESUMEN

Background: Preterm white matter injury (PWMI) is the most common cause of brain injury in premature neonates. PWMI involves a differentiation arrest of oligodendrocytes, the myelinating cells of the central nervous system. Clemastine was previously shown to induce oligodendrocyte differentiation and myelination in mouse models of PWMI at a dose of 10 mg/kg/day. The minimum effective dose (MED) of clemastine is unknown. Identification if the MED is essential for maximizing safety and efficacy in neonatal clinical trials. We hypothesized that the MED in neonatal mice is lower than 10 mg/kg/day. Methods: Mouse pups were exposed to normoxia or hypoxia (10% FiO 2 ) from postnatal day 3 (P3) through P10. Vehicle or clemastine fumarate at one of four doses (0.5, 2, 7.5 or 10 mg/kg/day) was given orally to hypoxia-exposed pups. At P14, myelination was assessed by immunohistochemistry and electron microscopy to determine the MED. Clemastine pharmacokinetics were evaluated at steady-state on day 8 of treatment. Results: Clemastine rescued hypoxia-induced hypomyelination with a MED of 7.5 mg/kg/day. Pharmacokinetic analysis of the MED revealed C max 44.0 ng/mL, t 1/2 4.6 hours, and AUC 24 280.1 ng*hr/mL. Conclusion: Based on these results, myelination-promoting exposures should be achievable with oral doses of clemastine in neonates with PWMI. Key Points: Preterm white matter injury (PWMI) is the most common cause of brain injury and cerebral palsy in premature neonates.Clemastine, an FDA-approved antihistamine, was recently identified to strongly promote myelination in a mouse model of PWMI and is a possible treatment.The minimum effective dose in neonatal rodents is unknown and is critical for guiding dose selection and balancing efficacy with toxicity in future clinical trials.We identified the minimum effective dose of clemastine and the associated pharmacokinetics in a murine chronic hypoxia model of PWMI, paving the way for a future clinical trial in human neonates.

3.
Contemp Clin Trials ; 134: 107333, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37739167

RESUMEN

INTRODUCTION: Multiple sclerosis (MS) is a major cause of disability in young and middle-aged people, and myelin repair therapies are needed to slow or potentially reverse this damage. Bazedoxifene (BZA) is a selective estrogen receptor modulator identified in a novel high-throughput unbiased screen for its remyelinating potential, and its remyelinating effects were demonstrated in pre-clinical models. METHODS: This is a single-center, double blind, randomized, controlled, delayed-start Phase 2 clinical trial (NCT04002934) investigating the remyelinating effects of BZA relative to placebo. Female patients with relapsing-remitting MS, aged 45-60 years (or > 40 if post-menopausal), and ambulatory status (EDSS 0-6 inclusive), will be recruited into a clinical trial with 2 arms of identical design, except that the "Chronic Optic Neuropathy" arm requires additional inclusion criteria of electrophysiological evidence of prior visual pathway demyelination. Clinical, electrophysiological, and imaging evaluations will occur at baseline, 3 months, and 6 months. The primary outcome is change in Myelin Water Fraction (MWF) on MRI within the corpus callosum. Secondary outcomes are: visual evoked potential (VEP) P100 latency, novel digital measures of cognition and activity, and patient reported outcomes. Tertiary outcomes are: safety and tolerability. DISCUSSION: BZA has strong preclinical effects on myelin repair, and in the general population demonstrated benefits in treating postmenopausal osteoporosis. Together, these findings support the rationale for an RCT testing BZA in women with MS, evaluating established neuroimaging and neurovisual measures of myelin repair. Additionally, validating novel digital tools could increase sensitivity to change and inform the duration and design of future clinical trials.


Asunto(s)
Esclerosis Múltiple , Remielinización , Persona de Mediana Edad , Humanos , Femenino , Vaina de Mielina , Potenciales Evocados Visuales
4.
Neuron ; 109(8): 1258-1273, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33621477

RESUMEN

Myelin, multilayered lipid-rich membrane extensions formed by oligodendrocytes around neuronal axons, is essential for fast and efficient action potential propagation in the central nervous system. Initially thought to be a static and immutable process, myelination is now appreciated to be a dynamic process capable of responding to and modulating neuronal function throughout life. While the importance of this type of plasticity, called adaptive myelination, is now well accepted, we are only beginning to understand the underlying cellular and molecular mechanisms by which neurons communicate experience-driven circuit activation to oligodendroglia and precisely how changes in oligodendrocytes and their myelin refine neuronal function. Here, we review recent findings addressing this reciprocal relationship in which neurons alter oligodendroglial form and oligodendrocytes conversely modulate neuronal function.


Asunto(s)
Encéfalo/fisiología , Vaina de Mielina/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Oligodendroglía/fisiología , Animales , Encéfalo/citología , Humanos , Neuronas/citología , Oligodendroglía/citología
5.
Nat Commun ; 10(1): 2976, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278268

RESUMEN

In the central nervous system (CNS), oligodendrocytes myelinate multiple axons; in the peripheral nervous system (PNS), Schwann cells (SCs) myelinate a single axon. Why are the myelinating potentials of these glia so fundamentally different? Here, we find that loss of Fbxw7, an E3 ubiquitin ligase component, enhances the myelinating potential of SCs. Fbxw7 mutant SCs make thicker myelin sheaths and sometimes appear to myelinate multiple axons in a fashion reminiscent of oligodendrocytes. Several Fbxw7 mutant phenotypes are due to dysregulation of mTOR; however, the remarkable ability of mutant SCs to ensheathe multiple axons is independent of mTOR signaling. This indicates distinct roles for Fbxw7 in SC biology including modes of axon interactions previously thought to fundamentally distinguish myelinating SCs from oligodendrocytes. Our data reveal unexpected plasticity in the myelinating potential of SCs, which may have important implications for our understanding of both PNS and CNS myelination and myelin repair.


Asunto(s)
Axones/fisiología , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Vaina de Mielina/fisiología , Animales , Axones/ultraestructura , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Modelos Animales , Vaina de Mielina/ultraestructura , Nervio Ciático/citología , Nervio Ciático/ultraestructura
6.
J Clin Invest ; 128(2): 564-566, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29252213

RESUMEN

White matter abnormalities are prevalent in neuropsychiatric disorders such as schizophrenia, but it is unclear whether these abnormalities represent a cause or consequence of these disorders. Reduced levels of the myelin protein 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNP) are associated with the schizophrenic symptom catatonia in both humans and mouse models. In this issue of the JCI, Janova et al. show that reduced CNP levels correlate with catatonia and white matter inflammation in human subjects. Furthermore, they demonstrate that microglial ablation prevents and alleviates catatonic signs in Cnp-/- mice, indicating that microglial-mediated inflammation causes catatonia. Together, this study identifies a cellular mechanism by which subtle myelin abnormalities cause low-grade neuroinflammation and catatonic behavior.


Asunto(s)
Catatonia , Sustancia Blanca , Animales , Función Ejecutiva , Humanos , Inflamación , Ratones , Microglía , Vaina de Mielina
7.
Neuron ; 96(2): 373-386.e6, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-29024661

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of many cancer treatments. The hallmark of CIPN is degeneration of long axons required for transmission of sensory information; axonal degeneration causes impaired tactile sensation and persistent pain. Currently the molecular mechanisms of CIPN are not understood, and there are no available treatments. Here we show that the chemotherapeutic agent paclitaxel triggers CIPN by altering IP3 receptor phosphorylation and intracellular calcium flux, and activating calcium-dependent calpain proteases. Concomitantly paclitaxel impairs axonal trafficking of RNA-granules and reduces synthesis of Bclw (bcl2l2), a Bcl2 family member that binds IP3R1 and restrains axon degeneration. Surprisingly, Bclw or a stapled peptide corresponding to the Bclw BH4 domain interact with axonal IP3R1 and prevent paclitaxel-induced degeneration, while Bcl2 and BclxL cannot do so. Together these data identify a Bclw-IP3R1-dependent cascade that causes axon degeneration and suggest that Bclw-mimetics could provide effective therapy to prevent CIPN.


Asunto(s)
Axones/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Paclitaxel/toxicidad , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Secuencia de Aminoácidos , Animales , Antineoplásicos Fitogénicos/toxicidad , Axones/efectos de los fármacos , Axones/patología , Células Cultivadas , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/patología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...