Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 277(Pt 4): 134390, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111466

RESUMEN

Members of the KCTD protein family play key roles in fundamental physio-pathological processes including cancer, neurodevelopmental/neuropsychiatric, and genetic diseases. Here, we report the crystal structure of the KCTD1 P20S mutant, which causes the scalp-ear-nipple syndrome, and molecular dynamics (MD) data on the wild-type protein. Surprisingly, the structure unravels that the N-terminal region, which precedes the BTB domain (preBTB) and bears the disease-associated mutation, adopts a folded polyproline II (PPII) state. The KCTD1 pentamer is characterized by an intricate architecture in which the different subunits mutually exchange domains to generate a closed domain swapping motif. Indeed, the BTB of each chain makes peculiar contacts with the preBTB and the C-terminal domain (CTD) of an adjacent chain. The BTB-preBTB interaction consists of a PPII-PPII recognition motif whereas the BTB-CTD contacts are mediated by an unusual (+/-) helix discontinuous association. The inspection of the protein structure, along with the data emerged from the MD simulations, provides an explanation of the pathogenicity of the P20S mutation and unravels the role of the BTB-preBTB interaction in the insurgence of the disease. Finally, the presence of potassium bound to the central cavity of the CTD pentameric assembly provides insights into the role of KCTD1 in metal homeostasis.

2.
Chem Sci ; 15(23): 8858-8872, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38873078

RESUMEN

An expansion of poly-alanine up to +13 residues in the C-terminus of the transcription factor PHOX2B underlies the onset of congenital central hypoventilation syndrome (CCHS). Recent studies demonstrated that the alanine tract expansion influences PHOX2B folding and activity. Therefore, structural information on PHOX2B is an important target for obtaining clues to elucidate the insurgence of the alanine expansion-related syndrome and also for defining a viable therapy. Here we report by NMR spectroscopy the structural characterization of the homeodomain (HD) of PHOX2B and HD + C-terminus PHOX2B protein, free and in the presence of the target DNA. The obtained structural data are then exploited to obtain a structural model of the PHOX2B-DNA interaction. In addition, the variant +7Ala, responsible for one of the most frequent forms of the syndrome, was analysed, showing different conformational proprieties in solution and a strong propensity to aggregation. Our data suggest that the elongated poly-alanine tract would be related to disease onset through a loss-of-function mechanism. Overall, this study paves the way for the future rational design of therapeutic drugs, suggesting as a possible therapeutic route the use of specific anti-aggregating molecules capable of preventing variant aggregation and possibly restoring the DNA-binding activity of PHOX2B.

3.
Mol Microbiol ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619026

RESUMEN

MucR belongs to a large protein family whose members regulate the expression of virulence and symbiosis genes in α-proteobacteria species. This protein and its homologs were initially studied as classical transcriptional regulators mostly involved in repression of target genes by binding their promoters. Very recent studies have led to the classification of MucR as a new type of Histone-like Nucleoid Structuring (H-NS) protein. Thus this review is an effort to put together a complete and unifying story demonstrating how genetic and biochemical findings on MucR suggested that this protein is not a classical transcriptional regulator, but functions as a novel type of H-NS-like protein, which binds AT-rich regions of genomic DNA and regulates gene expression.

4.
ACS Chem Biol ; 16(12): 2798-2807, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34825823

RESUMEN

The overexpression of PED/PEA15, the phosphoprotein enriched in diabetes/phosphoprotein enriched in the astrocytes 15 protein (here referred simply to as PED), observed in some forms of type II diabetes, reduces the transport of insulin-stimulated glucose by binding to the phospholipase D1 (PLD1). The inhibition of the PED/PLD1 interaction was shown to restore basal glucose transport, indicating PED as a pharmacological target for the development of drugs capable of improving insulin sensitivity and glucose tolerance. We here report the identification and selection of PED ligands by means of NMR screening of a library of small organic molecules, NMR characterization of the PED/PLD1 interaction in lysates of cells expressing PLD1, and modulation of such interactions using BPH03, the best selected ligand. Overall, we complement the available literature data by providing detailed information on the structural determinants of the PED/PLD1 interaction in a cellular lysate environment and indicate BPH03 as a precious scaffold for the development of novel compounds that are able to modulate such interactions with possible therapeutic applications in type II diabetes.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Astrocitos/química , Diabetes Mellitus Tipo 2/metabolismo , Fragmentos de Péptidos/química , Fosfolipasa D/química , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Transporte Biológico , Microambiente Celular , Glucosa , Humanos , Resistencia a la Insulina , Ligandos , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Termodinámica
5.
Chembiochem ; 21(5): 702-711, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31538690

RESUMEN

Sterile alpha motif (SAM) domains are protein interaction modules with a helical fold. SAM-SAM interactions often adopt the mid-loop (ML)/end-helix (EH) model, in which the C-terminal helix and adjacent loops of one SAM unit (EH site) bind the central regions of another SAM domain (ML site). Herein, an original strategy to attack SAM-SAM associations is reported. It relies on the design of cyclic peptides that target a region of the SAM domain positioned at the bottom side of the EH interface, which is thought to be important for the formation of a SAM-SAM complex. This strategy has been preliminarily tested by using a model system of heterotypic SAM-SAM interactions involving the erythropoietin-producing hepatoma kinase A2 (EphA2) receptor and implementing a multidisciplinary plan made up of computational docking studies, experimental interaction assays (by NMR spectroscopy and surface plasmon resonance techniques) and conformational analysis (by NMR spectroscopy and circular dichroism). This work further highlights how only a specific balance between flexibility and rigidity may be needed to generate modulators of SAM-SAM interactions.


Asunto(s)
Péptidos Cíclicos , Receptor EphA2/metabolismo , Motivo alfa Estéril , Humanos , Simulación del Acoplamiento Molecular , Biblioteca de Péptidos , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Unión Proteica , Conformación Proteica
6.
Biochim Biophys Acta Proteins Proteom ; 1865(9): 1095-1104, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28602916

RESUMEN

Ephrin A2 receptor (EphA2) plays a key role in cancer, it is up-regulated in several types of tumors and the process of ligand-induced receptor endocytosis, followed by degradation, is considered as a potential path to diminish tumor malignancy. Protein modulators of this mechanism are recruited at the cytosolic Sterile alpha motif (Sam) domain of EphA2 (EphA2-Sam) through heterotypic Sam-Sam associations. These interactions engage the C-terminal helix of EphA2 and close loop regions (the so called End Helix side). In addition, several studies report on destabilizing mutations in EphA2 related to cataract formation and located in/or close to the Sam domain. Herein, we analyzed from a structural point of view, one of these mutants characterized by the insertion of a novel 39 residue long polypeptide at the C-terminus of EphA2-Sam. A 3D structural model was built by computational methods and revealed partial disorder in the acquired C-terminal tail and a few residues participating in an α-helix and two short ß-strands. We investigated by CD and NMR studies the conformational properties in solution of two peptides encompassing the whole C-terminal tail and its predicted helical region, respectively. NMR binding experiments demonstrated that these peptides do not interact relevantly with either EphA2-Sam or its interactor Ship2-Sam. Molecular dynamics (MD) simulations further indicated that the EphA2 mutant could be represented only through a conformational ensemble and that the C-terminal tail should not largely wrap the EphA2-Sam End-Helix interface and affect binding to other Sam domains.


Asunto(s)
Receptor EphA2/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Catarata/genética , Dicroismo Circular , Humanos , Espectrometría de Masas , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Insercional , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptor EphA2/genética , Receptor EphA2/metabolismo , Proteínas Recombinantes de Fusión/química , Relación Estructura-Actividad
7.
Chembiochem ; 17(22): 2179-2188, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27763725

RESUMEN

The EphA2 receptor controls diverse physiological and pathological conditions and its levels are often upregulated in cancer. Targeting receptor overexpression, through modulation of endocytosis and consequent degradation, appears to be an appealing strategy for attacking tumor malignancy. In this scenario, the Sam domain of EphA2 plays a pivotal role because it is the site where protein regulators of endocytosis and stability are recruited by means of heterotypic Sam-Sam interactions. Because EphA2-Sam heterotypic complexes are largely based on electrostatic contacts, we have investigated the possibility of attacking these interactions with helical peptides enriched in charged residues. Several peptide sequences with high predicted helical propensities were designed, and detailed conformational analyses were conducted by diverse techniques including NMR, CD, and molecular dynamics (MD) simulations. Interaction studies were also performed by NMR, surface plasmon resonance (SPR), and microscale thermophoresis (MST) and led to the identification of two peptides capable of binding to the first Sam domain of Odin. These molecules represent early candidates for the generation of efficient Sam domain binders and antagonists of Sam-Sam interactions involving EphA2.


Asunto(s)
Péptidos/química , Receptor EphA2/química , Secuencia de Aminoácidos , Dicroismo Circular , Diseño de Fármacos , Cinética , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Péptidos/síntesis química , Péptidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Receptor EphA2/genética , Receptor EphA2/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Técnicas de Síntesis en Fase Sólida , Motivo alfa Estéril , Resonancia por Plasmón de Superficie
8.
Chembiochem ; 16(11): 1629-36, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26120079

RESUMEN

Odin is a protein belonging to the ANKS family, and has two tandem Sam domains. The first, Odin-Sam1, binds to the Sam domain of the EphA2 receptor (EphA2-Sam); this interaction could be crucial for the regulation of receptor endocytosis and might have an impact on cancer. Odin-Sam1 associates with EphA2-Sam by adopting a "mid-loop/end-helix" model. In this study three peptide sequences, encompassing the mid-loop interacting portion of Odin-Sam1 and its C-terminal α5 helix, were designed. Their conformational properties were analyzed by CD and NMR. In addition, their abilities to interact with EphA2-Sam were investigated by SPR studies. The peptides adopt a predominantly disordered state in aqueous buffer, but a higher helical content is evident in the presence of the cosolvent trifluoroethanol. Dissociation constants towards EphA2-Sam were in the high micromolar range. The structural findings suggest further routes for the design of potential anti-cancer therapeutics as inhibitors of EphA2-Sam heterotypic interactions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Receptor EphA2/química , Receptor EphA2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Trifluoroetanol/química , Agua/química
9.
Chemistry ; 19(37): 12217-20, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-23939913

RESUMEN

Get well prune: The C-terminal third domain of h-prune is largely unfolded and involved in relevant protein-protein interactions, particularly with Nm23-H1 (see figure), GSK-3ß and gelsolin. This study shows that protein functions mediated by protein-protein interactions can be accurately followed in cell lysates by using fast NMR spectroscopy, which could be easily used for a very efficient NMR drug-discovery strategy.


Asunto(s)
Proteínas Portadoras/química , Glucógeno Sintasa Quinasa 3/química , Nucleósido Difosfato Quinasas NM23/química , Proteínas Portadoras/metabolismo , Biología Celular , Descubrimiento de Drogas , Gelsolina/química , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Espectroscopía de Resonancia Magnética , Nucleósido Difosfato Quinasas NM23/metabolismo , Monoéster Fosfórico Hidrolasas
10.
Biochim Biophys Acta ; 1834(8): 1572-80, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23608947

RESUMEN

PED/PEA15 is a small protein involved in many protein-protein interactions that modulates the function of a number of key cellular effectors involved in major cell functions, including apoptosis, proliferation and glucose metabolism. In particular, PED/PEA15 interacts with the phospholipase D (PLD) isoforms 1 and 2 increasing protein kinase C-α isoform activity and affects both insulin-stimulated glucose transport and glucose-stimulated insulin secretion. The C-terminal portion (residues 712-1074) of PLD1, named D4, is still able to interact with PED/PEA15. In this study we characterized, by means of NMR spectroscopy, the molecular interaction of PED/PEA15 with D4α, a smaller region of D4, encompassing residues 712-818, shown to have the same affinity for PED/PEA15 and to induce the same effects as D4 in PED/PEA15-overexpressing cells. Chemical shift perturbation (CSP) studies allowed to define D4α binding site of PED/PEA15 and to identify a smaller region likely affected by an allosteric effect. Moreover, ELISA-like experiments showed that three 20-mer overlapping synthetic peptides, covering the 762-801 region of D4α, strongly inhibit PED/PEA15-D4α interaction through their binding to PED/PEA15 with KDs in low micromolar range. Finally, molecular details of the interaction of PED/PEA15 with one of the three peptides have been revealed by CSP and saturation transfer difference (STD) analyses.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Espectroscopía de Resonancia Magnética , Fragmentos de Péptidos/química , Fosfolipasa D/química , Fosfoproteínas/química , Proteínas Reguladoras de la Apoptosis , Ensayo de Inmunoadsorción Enzimática , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fragmentos de Péptidos/metabolismo , Fosfolipasa D/metabolismo , Fosfoproteínas/metabolismo , Conformación Proteica
11.
Chembiochem ; 14(1): 100-6, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23239578

RESUMEN

Arap3 is a phosphatidylinositol 3 kinase effector protein that plays a role as GTPase activator (GAP) for Arf6 and RhoA. Arap3 contains a sterile alpha motif (Sam) domain that has high sequence homology with the Sam domain of the EphA2-receptor (EphA2-Sam). Both Arap3-Sam and EphA2-Sam are able to associate with the Sam domain of the lipid phosphatase Ship2 (Ship2-Sam). Recently, we reported a novel interaction between the first Sam domain of Odin (Odin-Sam1), a protein belonging to the ANKS (ANKyrin repeat and Sam domain containing) family, and EphA2-Sam. In our latest work, we applied NMR spectroscopy, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) to characterize the association between Arap3-Sam and Odin-Sam1. We show that these two Sam domains interact with low micromolar affinity. Moreover, by means of molecular docking techniques, supported by NMR data, we demonstrate that Odin-Sam1 and Arap3-Sam might bind with a topology that is common to several Sam-Sam complexes. The revealed structural details form the basis for the design of potential peptide antagonists that could be used as chemical tools to investigate functional aspects related to heterotypic Arap3-Sam associations.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína
12.
FEBS J ; 277(20): 4229-40, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20825483

RESUMEN

PED/PEA-15 (phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes) is a ubiquitously expressed protein and a key regulator of cell growth and glucose metabolism. PED/PEA-15 mediates both homotypic and heterotypic interactions and is constituted by an N-terminal canonical death effector domain and a C-terminal tail. In the present study, the backbone dynamics of PED/PEA-15 via (15)N R(1) and R(2) and steady-state [(1)H]-(15)N NOE measurements is reported. The dynamic parameters were analyzed using both Lipari-Szabo model-free formalism and a reduced spectral density mapping approach. The results obtained define a polar and charged surface of the death effector domain characterized by internal motions in the micro- to millisecond timescale, which is crucial for the multiple heterotypic functional protein-protein interactions in which PED/PEA-15 is involved. The present study contributes to a better understanding of the molecular basis of the PED/PEA-15 functional interactions and provides a more detailed surface for the design and development of PED/PEA-15 binders.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Fosfoproteínas/metabolismo , Proteínas Reguladoras de la Apoptosis , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Simulación de Dinámica Molecular , Fosfoproteínas/química , Unión Proteica
13.
Proc Natl Acad Sci U S A ; 104(44): 17341-6, 2007 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-17956987

RESUMEN

The first putative prokaryotic Cys(2)His(2) zinc-finger domain has been identified in the transcriptional regulator Ros from Agrobacterium tumefaciens, indicating that the Cys(2)His(2) zinc-finger domain, originally thought to be confined to the eukaryotic kingdom, could be widespread throughout the living kingdom from eukaryotic, both animal and plant, to prokaryotic. In this article we report the NMR solution structure of Ros DNA-binding domain (Ros87), providing 79 structural characterization of a prokaryotic Cys(2)His(2) zinc-finger domain. The NMR structure of Ros87 shows that the putative prokaryotic Cys(2)His(2) zinc-finger sequence is indeed part of a significantly larger zinc-binding globular domain that possesses a novel protein fold very different from the classical fold reported for the eukaryotic classical zinc-finger. The Ros87 globular domain consists of 58 aa (residues 9-66), is arranged in a betabetabetaalphaalpha topology, and is stabilized by an extensive 15-residue hydrophobic core. A backbone dynamics study of Ros87, based on (15)N R(1), (15)N R(2), and heteronuclear (15)N-{(1)H}-NOE measurements, has further confirmed that the globular domain is uniformly rigid and flanked by two flexible tails. Mapping of the amino acids necessary for the DNA binding onto Ros87 structure reveals the protein surface involved in the DNA recognition mechanism of this new zinc-binding protein domain.


Asunto(s)
Agrobacterium tumefaciens/química , Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , ADN/química , ADN/metabolismo , Pliegue de Proteína , Proteínas Represoras/química , Dedos de Zinc , Agrobacterium tumefaciens/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cisteína/genética , Cisteína/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histidina/genética , Histidina/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Alineación de Secuencia
14.
Biochemistry ; 43(20): 6043-58, 2004 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-15147188

RESUMEN

No general strategy for thermostability has been yet established, because the extra stability of thermophiles appears to be the sum of different cumulative stabilizing interactions. In addition, the increase of conformational rigidity observed in many thermophilic proteins, which in some cases disappears when mesophilic and thermophilic proteins are compared at their respective physiological temperatures, suggests that evolutionary adaptation tends to maintain corresponding states with respect to conformational flexibility. In this study, we accomplished a structural analysis of the K18G/R82E Alicyclobacillus acidocaldarius thioredoxin (BacTrx) mutant, which has reduced heat resistance with respect to the thermostable wild-type. Furthermore, we have also achieved a detailed study, carried out at 25, 45, and 65 degrees C, of the backbone dynamics of both the BacTrx and its K18G/R82E mutant. Our findings clearly indicate that the insertion of the two mutations causes a loss of energetically favorable long-range interactions and renders the secondary structure elements of the double mutants more similar to those of the mesophilic Escherichia coli thioredoxin. Moreover, protein dynamics analysis shows that at room temperature the BacTrx, as well as the double mutant, are globally as rigid as the mesophilic thioredoxins; differently, at 65 degrees C, which is in the optimal growth temperature range of A. acidocaldarius, the wild-type retains its rigidity while the double mutant is characterized by a large increase of the amplitude of the internal motions. Finally, our research interestingly shows that fast motions on the pico- to nanosecond time scale are not detrimental to protein stability and provide an entropic stabilization of the native state. This study further confirms that protein thermostability is reached through diverse stabilizing interactions, which have the key role to maintain the structural folding stable and functional at the working temperature.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Calor , Mutación , Estructura Secundaria de Proteína , Tiorredoxinas/química , Tiorredoxinas/genética , Proteínas Bacterianas/metabolismo , Estabilidad de Enzimas , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Tiorredoxinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA