Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Behav Pharmacol ; 34(4): 213-224, 2023 06 01.
Article En | MEDLINE | ID: mdl-37171460

Cannabidiol is a phytocannabinoid that lacks the psychotomimetic properties of Δ9-tetrahydrocannabinol (THC), the main psychoactive Cannabis sativa component. Cannabidiol has several potential therapeutic properties, including anxiolytic, antidepressant, and antipsychotic; however, cannabidiol has low oral bioavailability, which can limit its clinical use. Here, we investigated if two cannabidiol analogs, HU-502 and HU-556, would be more potent than cannabidiol in behavioral tests predictive of anxiolytic, antidepressant, and antipsychotic effects. Different doses (0.01-3 mg/kg; intraperitoneally) of HU-556 and HU-502 were tested in male Swiss mice submitted to the elevated plus maze (EPM), forced swimming test (FST), and amphetamine-induced-prepulse inhibition (PPI) disruption and hyperlocomotion. Cannabidiol is effective in these tests at a dose range of 15-60 mg/kg in mice. We also investigated if higher doses of HU-556 (3 and 10 mg/kg) and HU-502 (10 mg/kg) produced the cannabinoid tetrad (hypolocomotion, catalepsy, hypothermia, and analgesia), which is induced by THC-like compounds. HU-556 (0.1 and 1 mg/kg) increased the percentage of open arm entries (but not time) in the EPM, decreased immobility time in the FST, and attenuated amphetamine-induced PPI disruption. HU-502 (1 and 3 mg/kg) decreased amphetamine-induced hyperlocomotion and PPI impairment. HU-556, at high doses, caused catalepsy and hypolocomotion, while HU-502 did not. These findings suggest that similar to cannabidiol, HU-556 could induce anxiolytic, antidepressant, and antipsychotic-like effects and that HU-502 has antipsychotic properties. These effects were found at a dose range devoid of cannabinoid tetrad effects.


Anti-Anxiety Agents , Antipsychotic Agents , Cannabidiol , Cannabinoids , Mice , Male , Animals , Cannabidiol/pharmacology , Antipsychotic Agents/pharmacology , Anti-Anxiety Agents/pharmacology , Catalepsy/chemically induced , Antidepressive Agents/pharmacology , Amphetamine , Dronabinol/pharmacology
2.
Article En | MEDLINE | ID: mdl-35341823

Despite attenuating the positive symptoms, drugs currently used to treat schizophrenia frequently do not improve the negative symptoms and cognitive impairments. In addition, they show low tolerability, which has been associated with high rates of treatment discontinuation. Recent evidence suggests that the endocannabinoid system may be a target for schizophrenia treatment. The CB2 receptor modulates dopaminergic neurotransmission, which is abnormally enhanced in schizophrenia patients. Here, we aimed to evaluate whether HU-910, a selective CB2 receptor agonist, would reverse schizophrenia-related behavioral changes observed after the acute injections of amphetamine or the N-methyl-d-aspartate receptor (NMDAR) antagonist MK-801. We also investigated the effects of HU-910 in the memory impairment caused by repeated MK-801 administration. Finally, we tested whether HU-910 would produce the cannabinoid tetrad (catalepsy, hypolocomotion, hypothermia, and antinociception). In male C57BL/6 mice, the acute treatment with HU-910 (30 mg/kg) prevented the hyperlocomotion induced by acute MK-801. This effect was blocked by the CB2 receptor antagonist AM630 (1 mg/kg). On the contrary, HU-910 did not prevent the increased locomotor activity caused by acute amphetamine. The acute treatment with HU-910 (3, 10, and 30 mg/kg) also attenuated the impairments in the prepulse inhibition test induced by acute MK-801 and amphetamine. The repeated treatment with HU-910 attenuated the cognitive impairment caused by chronic administration of MK-801 in the novel object recognition test. Furthermore, HU-910 did not produce the cannabinoid tetrad. These results indicate that HU-910 produced antipsychotic-like effects and support further research on the potential therapeutic properties of this compound to treat schizophrenia.


Cannabinoids , Schizophrenia , Animals , Bridged Bicyclo Compounds , Cannabinoids/therapeutic use , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/therapeutic use , Humans , Male , Mice , Mice, Inbred C57BL , Receptor, Cannabinoid, CB2 , Receptors, N-Methyl-D-Aspartate , Rodentia , Schizophrenia/drug therapy
3.
Behav Brain Res ; 428: 113832, 2022 06 25.
Article En | MEDLINE | ID: mdl-35259414

Dysregulation of GABAergic neurotransmission has long been implicated in several psychiatric disorders, including schizophrenia, depression, and anxiety disorders. Alpha 5 subunit-containing GABAA receptors (α5-GABAAR), which are expressed mainly by pyramidal neurons in the hippocampus, have been proposed as a potential target to treat these psychiatric disorders. Here, we evaluated the effects produced by GL-II-73 and SH-053-2'F-R-CH3 (1, 5, and 10 mg/kg), two positive allosteric modulators of α5-GABAAR in behavioral tests sensitive to drugs with anxiolytic, antidepressant, and antipsychotic properties in male and female C57BL/6 mice. In both males and females, GL-II-73 produced an anxiolytic-like effect in the elevated plus-maze (EPM) and novelty-suppressed feeding and a rapid and sustained antidepressant-like effect in the forced swim test. GL-II-73 also induced antipsychotic-like effects in males indicated by attenuating MK-801-induced hyperlocomotion and prepulse inhibition (PPI) disruption. However, GL-II-73 per se increased locomotor activity and impaired fear memory extinction in males and females and PPI in males. On the other hand, SH-053-2'F-R-CH3 induced anxiolytic-like effects in the EPM and facilitated fear memory extinction in males. Contrary to GL-II-73, SH-053-2'F-R-CH3 attenuated MK-801-induced hyperlocomotion and PPI disruption in females but not in males. Neither of these drugs induced rewarding effects or impaired motor coordination. These findings suggest that GL-II-73 and SH-053-2'F-R-CH3 cause distinct sex-dependent behavioral responses and support continued preclinical research on the potential of positive allosteric modulators of α5-GABAAR for the treatment of psychiatric disorders.


Anti-Anxiety Agents , Antipsychotic Agents , Animals , Anti-Anxiety Agents/pharmacology , Benzodiazepines/pharmacology , Dizocilpine Maleate , Female , Humans , Male , Mice , Mice, Inbred C57BL , Receptors, GABA-A , gamma-Aminobutyric Acid
4.
Neurotox Res ; 38(4): 1049-1060, 2020 Dec.
Article En | MEDLINE | ID: mdl-32929685

Schizophrenia patients show very complex symptoms in several psychopathological domains. Some of these symptoms remain poorly treated. Therefore, continued effort is needed to find novel pharmacological strategies for improving schizophrenia symptoms. Recently, minocycline, a second-generation tetracycline, has been suggested as an adjunctive treatment for schizophrenia. The antipsychotic-like effect of doxycycline, a minocycline analog, was investigated here. We found that both minocycline and doxycycline prevented amphetamine-induced prepulse inhibition (PPI) disruption. However, neither of them blocked MK801-induced effects, albeit doxycycline had a modest impact against ketamine-induced effects. Neither c-Fos nor nNOS expression, which was evaluated in limbic regions, were modified after acute or sub-chronic treatment with doxycycline. Therefore, apomorphine inducing either PPI disruption and climbing behavior was not prevented by doxycycline. This result discards a direct blockade of D2-like receptors, also suggested by the lack of doxycycline cataleptic-induced effect. Contrasting, doxycycline prevented SKF 38393-induced effects, suggesting a preferential doxycycline action at D1-like rather than D2-like receptors. However, doxycycline did not bind to the orthosteric sites of D1, D2, D3, D4, 5-HT2A, 5-HT1A, and A2A receptors suggesting no direct modulation of these receptors. Our data corroborate the antipsychotic-like effect of doxycycline. However, these effects are probably not mediated by doxycycline direct interaction with classical receptors enrolled in the antipsychotic effect.


Doxycycline/therapeutic use , Prepulse Inhibition/drug effects , Schizophrenia/diagnosis , Schizophrenia/drug therapy , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/metabolism , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Amphetamine/metabolism , Amphetamine/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Apomorphine/toxicity , Dopamine Agonists/metabolism , Dopamine Agonists/pharmacology , Dopamine Antagonists/metabolism , Dopamine Antagonists/pharmacology , Doxycycline/metabolism , Doxycycline/pharmacology , Forecasting , Male , Mice , Prepulse Inhibition/physiology , Receptors, Dopamine/metabolism , Schizophrenia/chemically induced , Schizophrenia/metabolism
5.
Psychopharmacology (Berl) ; 231(4): 663-72, 2014 Feb.
Article En | MEDLINE | ID: mdl-24101156

RATIONALE: Nitric oxide (NO) modulates the dopamine uptake and release processes and appears to be implicated in dopamine-related pathologies, such as schizophrenia. However, it is unclear whether there is excess or deficient NO synthesis in schizophrenia pathophysiology. Analyses of the intracellular pathways downstream of NO system activation have identified the cyclic nucleotide cyclic guanosine monophosphate (cGMP) as a possible target for drug development. Defects in the sensorimotor gating of the neural mechanism underlying the integration and processing of sensory information have been detected across species through prepulse inhibition (PPI). OBJECTIVES: The aim of this study was to investigate the effects of NO/cGMP increase on sensorimotor gating modulation during dopamine hyperfunction. METHODS: Mice were treated with NO donors and subjected to the PPI test. Treatment with the NO donor sodium nitroprusside was preceded by pretreatment with a soluble guanylate cyclase (sGC) inhibitor. Additionally, the mice were treated with NO donors and phosphodiesterases inhibitors prior to amphetamine treatment. RESULTS: Pretreatment with the NO donors enhanced the PPI response and attenuated the amphetamine-disruptive effects on the PPI. The sGC inhibitor did not modify the sodium nitroprusside effects. Additionally, the cGMP increase induced by a specific phosphodiesterase inhibitor did not modify the amphetamine-disruptive effect. CONCLUSIONS: This study provides the first demonstration that an increase in NO can improve the PPI response and block the amphetamine-disruptive effects on the PPI response. Our data are consistent with recent clinical results. However, these effects do not appear to be related to an increase in cGMP levels, and further investigation is thus required.


Cyclic GMP/metabolism , Inhibition, Psychological , Nitric Oxide/metabolism , Reflex, Startle/physiology , Sensory Gating/physiology , Acoustic Stimulation , Amphetamine/pharmacology , Animals , Cyclic AMP/metabolism , Dopamine Agents/pharmacology , Dose-Response Relationship, Drug , Guanylate Cyclase/antagonists & inhibitors , Guanylate Cyclase/metabolism , Male , Mice , Neuropsychological Tests , Nitric Oxide Donors/pharmacology , Nitroprusside/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Purinones/pharmacology , Reflex, Startle/drug effects , Sensory Gating/drug effects
...