Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 650: 123671, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38065345

RESUMEN

In the last few years, twin-screw wet granulation (TSWG) has become one of the key continuous pharmaceutical unit operations. Despite the many studies that have been performed, only little is known about the effect of the starting material properties on the stepwise granule formation along the length of the twin-screw granulator (TSG) barrel. Hence, this study obtained a detailed understanding of the effect of formulation properties (i.e., Active Pharmaceutical Ingredient (API) properties, formulation blend particle size distribution and formulation drug load) and process settings on granule formation in TSWG. An experimental set-up was used allowing the collection of granules at the different TSG compartments. Granules were characterized in terms of granule size, shape, binder liquid and API distributions. Liquid-to-solid (L/S) ratio was the only TSG process parameter impacting the granule size and shape evolution. Particle size and flow properties (e.g., flow rate index) had an important effect on the granule size and shape changes whereas water-related properties (e.g., water binding capacity and solubility) became influential at the last TSG compartments. The API solubility and L/S ratio were found to have a major impact on the distribution of binder liquid over the different granule size fractions. In the first TSG compartment (i.e., wetting compartment), the distribution of the API in the granules was influenced by its solubility in the granulation liquid.


Asunto(s)
Tornillos Óseos , Agua , Solubilidad , Tamaño de la Partícula , Humectabilidad , Composición de Medicamentos , Tecnología Farmacéutica
2.
Int J Pharm ; 646: 123493, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37813175

RESUMEN

This paper presents an application case of model-based design of experiments for the continuous twin-screw wet granulation and fluid-bed drying sequence. The proposed framework consists of three previously developed models. Here, we are testing the applicability of previously published unit operation models in this specific part of the production line to a new active pharmaceutical ingredient. Firstly, a T-shaped partial least squares regression model predicts d-values of granules after wet granulation with different process settings. Then, a high-resolution full granule size distribution is computed by a hybrid population balance and partial least squares regression model. Lastly, a mechanistic model of fluid-bed drying simulates drying time and energy efficiency, using the outputs of the first two models as a part of the inputs. In the application case, good operating conditions were calculated based on material and formulation properties as well as the developed process models. The framework was validated by comparing the simulation results with three experimental results. Overall, the proposed framework enables a process designer to find appropriate process settings with a less experimental workload. The framework combined with process knowledge reduced 73.2% of material consumption and 72.3% of time, especially in the early process development phase.


Asunto(s)
Tornillos Óseos , Desecación , Composición de Medicamentos/métodos , Tamaño de la Partícula , Simulación por Computador , Desecación/métodos , Tecnología Farmacéutica/métodos , Comprimidos
3.
Int J Pharm ; 645: 123391, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37696346

RESUMEN

Twin-screw wet granulation (TSWG) stands out as a promising continuous alternative to conventional batch fluid bed- and high shear wet granulation techniques. Despite its potential, the impact of raw material properties on TSWG processability remains inadequately explored. Furthermore, the absence of supportive models for TSWG process development with new active pharmaceutical ingredients (APIs) adds to the challenge. This study tackles these gaps by introducing four partial least squares (PLS) models that approximate both the applicable liquid-to-solid (L/S) ratio range and resulting granule attributes (i.e., granule size and friability) based on initial material properties. The first two PLS models link the lowest and highest applicable L/S ratio for TSWG, respectively, with the formulation blend properties. The third and fourth PLS models predict the granule size and friability, respectively, from the starting API properties and applied L/S ratio for twin-screw wet granulation. By analysing the developed PLS models, water-related material properties (e.g., solubility, wettability, dissolution rate), as well as density and flow-related properties (e.g., flow function coefficient), were found to be impacting the TSWG processability. In addition, the applicability of the developed PLS models was evaluated by using them to propose suitable L/S ratio ranges (i.e., resulting in granules with the desired properties) for three new APIs and related formulations followed by an experimental validation thereof. Overall, this study helped to better understand the effect of raw material properties upon TSWG processability. Moreover, the developed PLS models can be used to propose suitable TSWG process settings for new APIs and hence reduce the experimental effort during process development.


Asunto(s)
Tornillos Óseos , Tecnología Farmacéutica , Tamaño de la Partícula , Solubilidad , Humectabilidad , Composición de Medicamentos/métodos , Tecnología Farmacéutica/métodos , Comprimidos
4.
Eur J Pharm Biopharm ; 189: 251-263, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37356638

RESUMEN

The use of in-line near-infrared (NIR) measurements for tablet potency monitoring and diversion was studied. First, the optimal sample size for in-line NIR measurements inside the feed chute and the dosing and filling chamber of the tablet press feed frame was determined to allow proper comparison between these different measurement positions. Because of the considerably longer measurement time needed to obtain the same sample size inside the feed chute compared to the feed frame, the possibility of powder segregation inside the feed chute and the additional powder mixing inside the feed frame, the latter is preferred over the feed chute for in-line blend potency monitoring. Next, a design of experiments (DoE) was performed to evaluate the effect of paddle speed, turret speed, overfill level and formulation properties upon the lead-lag and the time it takes before the powder blend that is expelled at the dosing station is measured by the NIR inside the dosing chamber. Lead-lag is defined as the difference in time and API concentration between the measured in-line NIR response inside the filling chamber of the feed frame and the off-line NIR tablet response. Paddle speed and turret speed were the only compression parameters affecting lead-lag. Lead-lag decreased with increasing paddle speed for the first formulation. For the second formulation, lead-lag decreased with decreasing paddle speed and/or increasing turret speed. Formulation properties did not have an effect on the lead-lag. The in-line NIR response inside the dosing chamber of the feed frame was found to be closely following the tablet NIR response. Therefore, the dosing chamber could be used as an additional in-line NIR position for tablet potency monitoring and diversion. It can provide an extra layer of confidence about the final tablet quality. To demonstrate this potential benefit of simultaneous in-line NIR measurements inside the filling and dosing chamber of the feed frame, a tableting experiment was performed where a surrogate API spike was introduced into the product stream to mimic a potential process disturbance. The in-line NIR measurements inside the filling chamber allow diverting tablets in-time when the blend potency crosses the predefined control limits. And because the NIR response inside the dosing chamber closely follows the tablet NIR response, tablet diversion can discontinue when the blend potency inside the dosing chamber is again within the control limits. This could increase the yield of the tableting process by avoiding a longer than needed wash-out period and rejecting tablets that meet the release limits.


Asunto(s)
Tecnología Farmacéutica , Polvos , Comprimidos , Factores de Tiempo , Presión , Composición de Medicamentos
5.
Int J Pharm ; 641: 123010, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37169104

RESUMEN

In recent years, continuous twin-screw wet granulation (TSWG) is gaining increasing interest from the pharmaceutical industry. Despite the many publications on TSWG, only a limited number of studies focused on granule porosity, which was found to be an important granule property affecting the final tablet quality attributes, e.g. dissolution. In current study, the granule porosity along the length of the twin-screw granulator (TSG) barrel was evaluated. An experimental set-up was used allowing the collection of granules at the different TSG compartments. The effect of active pharmaceutical ingredient (API) properties on granule porosity was evaluated by using six formulations with a fixed composition but containing APIs with different physical-chemical properties. Furthermore, the importance of TSWG process parameters liquid-to-solid (L/S) ratio, mass feed rate and screw speed for the granule porosity was evaluated. Several water-related properties as well as particle size, density and flow properties of the API were found to have an important effect on granule porosity. While the L/S ratio was confirmed to be the dictating TSWG process parameter, granulator screw speed was also found to be an important process variable affecting granule porosity. This study obtained crucial information on the effect of material properties and process parameters on granule porosity (and granule formation) which can be used to accelerate TSWG process and formulation development.


Asunto(s)
Industria Farmacéutica , Tecnología Farmacéutica , Porosidad , Tamaño de la Partícula , Tornillos Óseos , Comprimidos , Composición de Medicamentos
6.
Int J Pharm ; 640: 123040, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37172629

RESUMEN

In the pharmaceutical industry, twin-screw wet granulation has become a realistic option for the continuous manufacturing of solid drug products. Towards the efficient design, population balance models (PBMs) have been recognized as a tool to compute granule size distribution and understand physical phenomena. However, the missing link between material properties and the model parameters limits the swift applicability and generalization of new active pharmaceutical ingredients (APIs). This paper proposes partial least squares (PLS) regression models to assess the impact of material properties on PBM parameters. The parameters of the compartmental one-dimensional PBMs were derived for ten formulations with varying liquid-to-solid ratios and connected with material properties and liquid-to-solid ratios by PLS models. As a result, key material properties were identified in order to calculate it with the necessary accuracy. Size- and moisture-related properties were influential in the wetting zone whereas density-related properties were more dominant in the kneading zones.


Asunto(s)
Composición de Medicamentos , Industria Farmacéutica , Composición de Medicamentos/métodos , Análisis de los Mínimos Cuadrados , Tamaño de la Partícula , Tecnología Farmacéutica/métodos
7.
Int J Pharm ; 611: 121328, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34852290

RESUMEN

The influence of different tableting process parameters on lead-lag was studied by collecting in-line near-infrared (NIR) spectra in the filling chamber of the tablet press feed frame and off-line NIR tablet data. Lead-lag is defined as the difference in time and API concentration between the measured in-line feed frame NIR response and the off-line NIR tablet data. Lead-lag results from the product formulation blend undergoing additional mixing after passing the NIR probe inside the feed frame, before being filled into the dies of the tablet press. A design of experiments (DoE) was performed to evaluate the effect of the tableting process factors paddle speed, turret speed, overfill level, paddle speed ratio and feed frame type upon lead-lag. Paddle speed and turret speed were identified as the only tableting parameters affecting lead-lag. Lead-lag decreased with increasing paddle speed or turret speed and became negligible at high paddle speed and high turret speed. Overfill level, paddle speed ratio and feed frame type did not affect lead-lag, suggesting that the amount and the trajectory of the recirculating powder in the feed frame did not significantly vary and hence influence the lead-lag within the examined process factor ranges. Finally, a methodology was developed using the in-line feed frame NIR measurements for the continuous monitoring and control of blend potency and tablet content uniformity. Tablet diversion should start when the in-line feed frame monitored blend potency exceeds the predefined control limits and can discontinue when this blend potency is again within the control limits for a duration equal to the lead-lag time. A combination of continuous blend potency monitoring inside the feed frame and in-process tablet weight control allows real-time tablet content uniformity assurance. Although the findings of this study are restricted to the specific equipment, tableting parameter ranges and product formulation used, the suggested approach for lead-lag determination and continuous tablet content uniformity monitoring can be applied to any rotary tablet press and product formulation.


Asunto(s)
Comprimidos
8.
Int J Pharm ; 612: 121284, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34813907

RESUMEN

For continuous pharmaceutical manufacturing of oral solid dosages, it is essential that product quality is measured inline. In this application, a continuous rotary tablet press is used. The goal is a model-based assessment of the quality of the blend in the feed frame to determine whether the concentration of the active pharmaceutical ingredient (API) will be within the prescribed limits. This is to achieve a better quality assurance than by offline testing of a small sample of tablets. In this way, product quality for real-time release (RTR) could be implemented. With a near-infrared (NIR) probe, the concentration of the API in the feed chute and the feed-frame were measured, as well as the API concentration of the tablets by an offline NIR measurement. These different data sets are connected and used for the residence time distribution characterization of the mixing dynamic of the tablet press. A residence time distribution model is fitted to the data, and is further used to compute the lead-lag time. This yields information on how long it takes for a quantity of product to go from being measured in the feed frame until ending up in tablets. Further, it gives information on the occurrence of mixing in the feed-frame itself. These models allow making accurate predictions of whether tablets fall within specified concentration range in real-time. The real-time prediction can be used in combination with a control system both to maintain the quality of the blend as well as to know which tablets to discard. This real-time quality assurance will lead to less material waste and fewer declined batches of tablets.


Asunto(s)
Espectroscopía Infrarroja Corta , Tecnología Farmacéutica , Composición de Medicamentos , Polvos , Comprimidos
9.
Pharmaceutics ; 13(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064771

RESUMEN

Recently, the pharmaceutical industry has undergone changes in the production of solid oral dosages from traditional inefficient and expensive batch production to continuous manufacturing. The latest advancements include increased use of continuous twin-screw wet granulation and application of advanced modeling tools such as Population Balance Models (PBMs). However, improved understanding of the physical process within the granulator and improvement of current population balance models are necessary for the continuous production process to be successful in practice. In this study, an existing compartmental one-dimensional PBM of a twin-screw granulation process was improved by altering the original aggregation kernel in the wetting zone as a result of an identifiability analysis. In addition, a strategy was successfully applied to reduce the number of model parameters to be calibrated in both the wetting zone and kneading zones. It was found that the new aggregation kernel in the wetting zone is capable of reproducing the particle size distribution that is experimentally observed at different process conditions as well as different types of formulations, varying in hydrophilicity and API concentration. Finally, it was observed that model parameters could be linked not only to the material properties but also to the liquid to solid ratio, paving the way to create a generic PBM to predict the particle size distribution of a new formulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...