Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol ; 38(6): 1292-1304, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36880193

RESUMEN

Swietenia macrophylla King, belongs to the Meliaceae family, is a valuable medicinal plant and its fruits have been processed commercially to a variety of health foods. The seeds have long been known for their ethnomedicinal significance against these diseases. Swietenine (Swi) was isolated from S. macrophylla and could ameliorate inflammation and oxidative stress. In this study, HepG2 cells induced by H2 O2 were used to construct oxidative stress model in vitro. The aim of this study was to investigate the protective effect of Swi on H2 O2 induced oxidative injury in HepG2 cells and its molecular mechanism, and to explore the effect of Swi on liver injury in db/db mice and its possible mechanism. The results showed that Swi significantly inhibited HepG2 cells viability and reduced oxidative damage in a dose-dependent manner as evidenced by a range of biochemical analysis and immunoblotting study. Moreover, it induced the protein and mRNA expression of HO-1 together with its upstream mediator Nrf2 and activated the phosphorylation of AKT in HepG2 cells. LY294002, a PI3K/AKT inhibitor, significantly suppressed the Nrf2 nuclear translocation and HO-1 expression in H2 O2 induced HepG2 cells treated with Swi. In addition, RNA interference with Nrf2 significantly reduced the expression level of Nrf2 and HO-1 in the nucleus. Swi has a significant protective effect on cell damage in H2 O2 induced HepG2 cells by increasing the antioxidant capacity which is achieved through the AKT/Nrf2/HO-1 pathway. Additionally, in vivo, Swi could protect the liver of type 2 diabetic mice by improving lipid deposition in liver tissue and inhibiting oxidative stress. These findings indicated that Swi can be a promising dietary agent to improve type 2 diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Apoptosis , Estrés Oxidativo , Transducción de Señal , Hígado/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo
2.
Environ Toxicol ; 37(12): 2977-2989, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36066211

RESUMEN

Swietenine (Swi), isolated from Swietenia macrophylla King ameliorates inflammation and oxidative stress, and diabetic nephropathy has a close connection with them. So the effects of Swi on diabetic nephropathy and its mechanism of action was explored. We divided human mesangial cells into five groups and determined the expression of NF-κB and NLRP3 inflammasomes in each group. The levels of inflammatory factors IL-1ß and IL-18 were also measured. To explore the relationship between NF-κB and NLRP3, we added PDTC, a specific NF-κB inhibitor, and LPS, and divided the experimental groups into seven groups. We measured the expressions of NF-κB and NLRP3, and then added MCC950, a specific inhibitor of NLRP3 and LPS, the expression of NLRP3, Caspase-1, and IL-1ß and IL-18 were measured. Animals divided into four groups and administered over 8 weeks. Protein excretion, creatinine, urea nitrogen, and uric acid were measured. Swi down regulated the expression of NF-κB, NLRP3, and Caspase-1. It reduced the levels of IL-1ß and IL-18. PDTC decreased the expression of NF-κB and NLRP3. Compared with the HG + PDTC group, the expression of NF-κB and NLRP3 in the HG + Swi + PDTC group decreased significantly. After adding lipopolysaccharide, the expression of NF-κB and NLRP3 increased, but this situation was reversed after adding Swi. After adding LPS, the expression of NLRP3 and Caspase-1 increased, and the levels of IL-1ß and IL-18 also increased, but this situation was reversed after the addition of Swi. Swi significantly improved the renal function of mice with diabetic nephropathy and inhibited the activation of NF-κB and the NLRP3 inflammasome and reduced inflammation by regulating the NF-κB/NLRP3/Caspase-1 signaling pathway, thereby improving diabetic nephropathy.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Ratones , Humanos , Caspasa 1/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Interleucina-18 , Lipopolisacáridos/farmacología , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Transducción de Señal , Inflamación/metabolismo
4.
Int Immunopharmacol ; 87: 106830, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32738596

RESUMEN

Berberine (BBR) is the effective constituent of Cortex phellodendri and was characterized as an excellent anti-microbial agent with significant anti-inflammatory effects. Previously, we had demonstrated that BBR alleviated the inflammatory response in adjuvant-induced arthritis (AA) rats by regulating polarization of macrophages. However, the exact mechanics by which BBR regulates macrophage polarization remained unclear. Here, we showed that BBR treatment had little influence on total number of macrophages in joints of AA rats, but increased the proportion of M2 macrophages and decreased the proportion of M1 macrophages. Meanwhile, we found BBR up-regulated the expression of AMP-activated protein kinase phosphorylation (p-AMPK) and down-regulated the expression of Hypoxia inducible factor 1α (HIF-1α) in synovial macrophages of AA rats. In vitro, using LPS-stimulated peritoneal macrophages from normal rats, we also verified that pretreatment with BBR promoted transition from M1 to M2 by up-regulating the expression of p-AMPK and suppressing the expression of HIF-1α. Compound C (an AMPK inhibitor) could abrogate the inhibition of BBR on migration of macrophages. Glycolysis of M1 suppressed by BBR through decreasing lactate export, glucose consumption, and increasing intracellular ATP content, which was remarkably reversed by Compound C. These findings indicated that anti-arthritis effect of BBR is associated with regulating energy metabolism of macrophages through AMPK/HIF-1α pathway.


Asunto(s)
Antiinflamatorios/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Berberina/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Articulación del Tobillo/efectos de los fármacos , Articulación del Tobillo/inmunología , Articulación del Tobillo/patología , Antiinflamatorios/farmacología , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Experimental/patología , Berberina/farmacología , Citocinas/sangre , Metabolismo Energético/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratas Sprague-Dawley
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(3): 361-369, 2020 Mar 30.
Artículo en Chino | MEDLINE | ID: mdl-32376584

RESUMEN

OBJECTIVE: To investigate the role of miR129 in mediating the effect of chloroquine to enhance cisplatin- induced apoptosis in nasopharyngeal carcinoma cells (HNE1). METHODS: MTT assay was used to detect the viability of HNE1 cells treated with different concentrations of cisplatin. Colony formation of HNE1 cells treated with cisplatin and chloroquine, alone or in combination, was observed using crystal violet staining. BALB/C unde mice were inoculated with HNE1 cells and randomly divided into 4 groups with 6 mice in each group. The mice received intraperitoneal injections of cisplatin and chloroquine, alone or in combination once every 3 days for 4 consecutive weeks, and the tumor growth was observed in each group. The expression of miR129 in HNE1 cells treated with chloroquine, cisplatin, or both was detected with qPCR. The effects of miR129 suppression with a miR129 inhibitor on the expressions of autophagy related proteins p62, LC3B, Beclin1 and the drug-resistant related protein P-glycoprotein (P-gp) were examined using Western blotting in HNE1 cells treated with chloroquine, cisplatin, or both; the changes in cell apoptosis were detected Annexin V/PI double staining. RESULTS: Chloroquine combined with cisplatin significantly inhibited HNE1 cell proliferation in vitro and the growth of HNE1 cell-derived tumor in nude mice as compared with cisplatin alone (P < 0.01). In cultured HNE1 cells, inhibition of the expression of miR129 significantly promoted autophagy and up-regulated P-gp expression (P < 0.01); Chloroquine obviously inhibited cisplatin-induced autophagy and up-regulated the expression of miR129 in HNE1 cells (P < 0.01). Transfection of the cells with the miR129 inhibitor abolished the inhibitory effect of chloroquine on cisplatin-induced autophagy, and significantly increased the cell survival rate (P < 0.05) and lower the cell apoptotic rate (P < 0.01) after combined treatment with chloroquine and cisplatin. CONCLUSIONS: Chloroquine enhances the pro-apoptotic effect of cisplatin by up-regulating miR129 to inhibit autophagy and drug resistance in HNE1 cells.


Asunto(s)
Autofagia , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Animales , Antineoplásicos , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Cloroquina , Cisplatino , Resistencia a Antineoplásicos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA