Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem X ; 23: 101786, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39286042

RESUMEN

To uncover the relationships between lipid components and flavor volatiles, distinctness in lipid components and odor substances in giant salamander livers of different genders were comparatively characterized through UPLC-Q Exactive-MS lipidomics and gas chromatography-ion migration spectrometry (GC-IMS). A total of 2171 and 974 lipid metabolites were detected in positive and negative ion modes, respectively. Triglycerides (TG) and phosphatidylcholines (PC) are the most abundant types of lipids. TG level in male livers was higher than that in female livers (P < 0.05), whereas PC level showed no marked variation (P > 0.05). Additionally, a total of 51 volatile components were detected through GC-IMS. Ketones (42.18 % âˆ¼ 45.44 %) and alcohols (24.19 % âˆ¼ 26.50 %) were the predominant categories, and their relative contents were higher in female livers. Finally, 30 differential lipid metabolites and 12 differential odor substances were screened and could be used as distinguishing labels in giant salamander livers of different genders. Correlation analysis indicated that PS(36:2e), TG(48:13), ZyE(37:6), and ZyE(33:6) correlated positively with 3-methyl butanal, 3-hydroxy-2-butanone, and 2-methyl-1-propanol (P < 0.05), but adversely linked with 1-penten-3-one, and 1-octen-3-one (P < 0.01). By three-fold cross-validation, prediction accuracies of these differential lipids and volatile compounds for gender recognition based on random forest model were 100 % and 92 %, respectively. These findings might not only add knowledge on lipid and volatile profiles in giant salamander livers as affected by genders, but also provide clues for their gender recognition.

2.
Ageing Res Rev ; 100: 102454, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39142391

RESUMEN

Alzheimer's disease (AD) is a multifaceted neurodegenerative condition marked by gradual cognitive deterioration and the loss of neurons. While conventional bulk RNA sequencing techniques have shed light on AD pathology, they frequently obscure the cellular diversity within brain tissues. The advent of single-cell RNA sequencing (scRNA-seq) has transformed our capability to analyze the cellular composition of AD, allowing for the detection of unique cell populations, rare cell types, and gene expression alterations at an individual cell level. This review examines the use of scRNA-seq in AD research, focusing on its contributions to understanding cellular diversity, disease progression, and potential therapeutic targets. We discuss key technological innovations, data analysis techniques, and challenges associated with scRNA-seq in studying AD. Furthermore, we highlight recent studies that have utilized scRNA-seq to identify novel biomarkers, uncover disease-associated pathways, and elucidate the role of non-neuronal cells, such as microglia and astrocytes, in AD pathogenesis. By providing a comprehensive overview of advancements in scRNA-seq for unraveling cellular heterogeneity in AD, this review highlights the transformative impact of scRNA-seq on our comprehension of disease mechanisms and the creation of targeted treatments.


Asunto(s)
Enfermedad de Alzheimer , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Enfermedad de Alzheimer/genética , Humanos , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Animales
3.
Curr Res Food Sci ; 8: 100781, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957287

RESUMEN

Variations in volatile flavor components in pigmented onion bulbs (purple, white, and yellow) before and after cooking were characterized by headspace gas chromatography-ion migration spectrometry (HS-GC-IMS) to investigate their odor traits. Results showed that 39 and 45 volatile flavor compounds were identified from pigmented onion bulbs before and after cooking via the HS-GC-IMS fingerprinting, respectively. Sulfurs (accounting for 50.65%-63.42%), aldehydes (13.36%-22.11%), and alcohols (11.32%-17.94%) ranked the top three prevailing compound categories in all pigmented onions (both raw and cooked). Compared to the raw colored onion bulbs, the relative proportion of sulfurs in cooked onions decreased, whereas the relative proportion of alcohols, esters, pyrazines, and furans increased. Two reliable prediction models were established through orthogonal partial least squares-discriminant analysis (OPLS-DA), and 8 and 22 distinctive odor compounds were sieved out by variable importance in projection (VIP>1.0) as volatile labels, respectively. Both principal component analysis (PCA) and clustering heatmap exhibited favorable distinguishing effects for various pigmented onion bulbs before and after cooking. These results might offer insights into understanding the odor characteristics of different pigmented onions.

4.
Int J Biol Macromol ; 274(Pt 1): 133332, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914408

RESUMEN

Biopolymers like starch, a renewable and widely available resource, are increasingly being used to fabricate the films for eco-friendly packaging solutions. Starch-based edible films offer significant advantages for food packaging, including biodegradability and the ability to extend shelf life. However, they also present challenges such as moisture sensitivity and limited barrier properties compared to synthetic materials. These limitations can be mitigated by incorporating bioactive components, such as antimicrobial agents or antioxidants, which enhance the film's resistance to moisture and improve its barrier properties, making it a more viable option for food packaging. This review explores the emerging field of starch-based sustainable edible films enhanced with bioactive components for food packaging applications. It delves into fabrication techniques, structural properties, and functional attributes, highlighting the potential of these innovative films to reduce environmental impact and preserve food quality. Key topics discussed include sustainability issues, processing methods, performance characteristics, and potential applications in the food industry. The review provides a comprehensive overview of current research and developments in starch-based edible films, presenting them as promising alternatives to conventional food packaging that can help reduce plastic waste and environmental impact.


Asunto(s)
Películas Comestibles , Embalaje de Alimentos , Almidón , Embalaje de Alimentos/métodos , Almidón/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Biopolímeros/química
5.
Ageing Res Rev ; 99: 102393, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925479

RESUMEN

Alzheimer's disease (AD) stands as a formidable challenge in modern medicine, characterized by progressive neurodegeneration, cognitive decline, and memory impairment. Despite extensive research, effective therapeutic strategies remain elusive. The antioxidant, anti-inflammatory, and neuroprotective properties of curcumin, found in turmeric, have demonstrated promise. The poor bioavailability and rapid systemic clearance of this drug limit its clinical application. This comprehensive review explores the potential of curcumin-loaded polymeric nanomaterials as an innovative therapeutic avenue for AD. It delves into the preparation and characteristics of diverse polymeric nanomaterial platforms, including liposomes, micelles, dendrimers, and polymeric nanoparticles. Emphasis is placed on how these platforms enhance curcumin's bioavailability and enable targeted delivery to the brain, addressing critical challenges in AD treatment. Mechanistic insights reveal how these nanomaterials modulate key AD pathological processes, including amyloid-beta aggregation, tau phosphorylation, oxidative stress, and neuroinflammation. The review also highlighted the preclinical studies demonstrate reduced amyloid-beta plaques and neuroinflammation, alongside improved cognitive function, while clinical trials show promise in enhancing curcumin's bioavailability and efficacy in AD. Additionally, it addresses the challenges of clinical translation, such as regulatory issues, large-scale production, and long-term stability. By synthesizing recent advancements, this review underscores the potential of curcumin-loaded polymeric nanomaterials to offer a novel and effective therapeutic approach for AD, aiming to guide future research and development in this field.


Asunto(s)
Enfermedad de Alzheimer , Curcumina , Nanoestructuras , Curcumina/administración & dosificación , Curcumina/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Animales , Polímeros , Nanopartículas/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología
6.
Molecules ; 29(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38893579

RESUMEN

The fabrication of zinc oxide-based nanomaterials (including natural and synthetic polymers like sulfated polysaccharide, chitosan, and polymethyl methacrylate) has potential to improve oral cancer treatment strategies. This comprehensive review explores the diverse synthesis methods employed to fabricate zinc oxide nanomaterials tailored for oral cancer applications. Several synthesis processes, particularly sol-gel, hydrothermal, and chemical vapor deposition approaches, are thoroughly studied, highlighting their advantages and limitations. The review also examines how synthesis parameters, such as precursor selection, the reaction temperature, and growth conditions, influence both the physicochemical attributes and biological efficacy of the resulting nanomaterials. Furthermore, recent advancements in surface functionalization and modification strategies targeted at improving the targeting specificity and pharmaceutical effectiveness of zinc oxide-based nanomaterials in oral cancer therapy are elucidated. Additionally, the review provides insights into the existing issues and prospective views in the field, emphasizing the need for further research to optimize synthesis methodologies and elucidate the mechanisms underlying the efficacy of zinc oxide-based nanoparticles in oral cancer therapy.


Asunto(s)
Neoplasias de la Boca , Nanoestructuras , Óxido de Zinc , Humanos , Óxido de Zinc/química , Óxido de Zinc/síntesis química , Neoplasias de la Boca/tratamiento farmacológico , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Animales
7.
Ageing Res Rev ; 99: 102359, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821418

RESUMEN

The intricate origins and diverse symptoms of Alzheimer's disease (AD) pose significant challenges for both diagnosis and treatment. Exosomes and microvesicles, which carry disease-specific cargo from a variety of central nervous system cell types, have emerged as promising reservoirs of biomarkers for AD. Research on the screening of possible biomarkers in Alzheimer's disease using proteomic profiling of EVs is systematically reviewed in this comprehensive review. We highlight key methodologies employed in EV isolation, characterization, and proteomic analysis, elucidating their advantages and limitations. Furthermore, we summarize the evolving landscape of EV-associated biomarkers implicated in AD pathogenesis, including proteins involved in amyloid-beta metabolism, tau phosphorylation, neuroinflammation, synaptic dysfunction, and neuronal injury. The literature review highlights the necessity for robust validation strategies and standardized protocols to effectively transition EV-based biomarkers into clinical use. In the concluding section, this review delves into potential future avenues and technological advancements pivotal in crafting EV-derived biomarkers applicable to AD diagnostics and prognostics. This review contributes to our comprehension of AD pathology and the advancement of precision medicine in neurodegenerative diseases, hinting at a promising era in AD precision medicine.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Vesículas Extracelulares , Proteómica , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico , Humanos , Biomarcadores/metabolismo , Proteómica/métodos , Vesículas Extracelulares/metabolismo , Animales
8.
Int J Biol Macromol ; 265(Pt 1): 130746, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467219

RESUMEN

The burgeoning field of starch-based nanomaterials in biomedical applications has perceived notable progressions, with a particular emphasis on their pivotal role in precision drug delivery and the inhibition of tumor growth. The complicated challenges in current biomedical research require innovative approaches for improved therapeutic outcomes, prompting an exploration into the possible of starch-based nanomaterials. The conceptualization of this review emerged from recognizing the need for a comprehensive examination of the structural attributes, versatile properties, and mechanisms underlying the efficiency of starch-based nanomaterials in inhibiting tumor growth and enabling targeted drug delivery. This review delineates the substantial growth in utilizing starch-based nanomaterials, elucidating their small size, high surface-volume ratio, and biocompatibility, predominantly emphasizing their possible to actively recognize cancer cells, deliver anticancer drugs, and combat tumors efficiently. The investigation of these nanomaterials encompasses to improving biocompatibility and targeting specific tissues, thereby contributing to the evolving landscape of precision medicine. The review accomplishes by highlighting the auspicious strategies and modern developments in the field, envisioning a future where starch-based nanomaterials play a transformative role in molecular nanomaterials, evolving biomedical sciences. The translation of these advancements into clinical applications holds the potential to revolutionize targeted drug delivery and expand therapeutic outcomes in the realm of precision medicine.


Asunto(s)
Antineoplásicos , Nanoestructuras , Neoplasias , Humanos , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Medicina de Precisión
9.
Lipids Health Dis ; 22(1): 203, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001454

RESUMEN

OBJECTIVE: The goal of this study was to explore the hypolipidemic effects of bergenin extracted from Saxifraga melanocentra Franch (S. melanocentra), which is a frequently utilized Tibetan medicinal plant known for its diverse bioactivities. Establishing a quality control system for black stem saxifrage is crucial to ensure the rational utilization of its medicinal resources. METHODS: A one-step polyamide medium-pressure liquid chromatography technique was applied to isolate and prepare bergenin from a methanol extract of S. melanocentra. A zebrafish model of hyperlipidemia was used to investigate the potential hypolipidemic effects of bergenin. RESULTS: The results revealed that bergenin exhibited substantial hypo efficacy in vivo. Specifically, bergenin significantly reduced the levels of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) while simultaneously increasing high-density lipoprotein cholesterol (HDL-c) levels. At the molecular level, bergenin exerted its effects by inhibiting the expression of FASN, SREBF1, HMGCRα, RORα, LDLRα, IL-1ß, and TNF while promoting the expression of IL-4 at the transcriptional level. Molecular docking analysis further demonstrated the strong binding affinity of bergenin to proteins such as FASN, SREBF1, HMGCRα, RORα, LDLRα, IL-4, IL-1ß, and TNF. CONCLUSIONS: Findings indicate that bergenin modulates lipid metabolism by regulating lipid and cholesterol synthesis as well as inflammatory responses through signaling pathways associated with FASN, SREBF1, and RORα. These results position bergenin as a potential candidate for the treatment of hyperlipidemia.


Asunto(s)
Hiperlipidemias , Saxifragaceae , Animales , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/genética , Interleucina-4 , Simulación del Acoplamiento Molecular , Pez Cebra , Triglicéridos , LDL-Colesterol , Hipolipemiantes/farmacología , Hipolipemiantes/uso terapéutico
10.
Food Funct ; 14(22): 10151-10162, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37902068

RESUMEN

The aim of this study is to investigate the alleviating effect of selenium-enriched Lactobacillus plantarum (SL) 6076 on colitis and liver inflammation induced by sodium dextran sulfate (DSS) in mice and its potential molecular mechanisms. Lactobacillus plantarum (LA) was cultured for 3 generations on MRS medium containing sodium selenite to generate SL. LA (3.2 × 1011 CFU mL-1), low selenium Lactobacillus plantarum (LS) (3.9 × 1010 CFU mL-1, 0.35 mg mL-1 Se) and high selenium Lactobacillus plantarum (HS) (2.8 × 1010 CFU mL-1, 0.52 mg mL-1 Se) were continuously fed to mice for 21 d to observe their effects on DSS-induced colitis and liver inflammation in mice. The composition of gut microbiota was detected through high-throughput 16S rRNA sequencing, and inflammatory cytokines, oxidative stress parameters, and serum biochemical indicators were measured in the colon and liver using quantitative polymerase chain reaction (qPCR) and biochemical analysis methods. The results showed that SL alleviated inflammation symptoms in the colon and liver, reduced the expression of inflammatory factors in the colon and liver, regulated oxidative stress responses in the colon, downregulated NF-κB-P65 pathway factors, and altered the composition and structure of the gut microbiota. In summary, DSS-induced colitis may cause liver inflammation, and SL had a significant relieving effect on both colon and liver inflammation. The intervention effect of SL was better than that of LA, while HS was better than LS. SL had a significant alleviating effect on DSS-induced colitis, and may exert its therapeutic effect by downregulating NF-κB-P65 signaling pathways and regulating the structure of intestinal microbiota. This study provides a new approach for the treatment of colitis.


Asunto(s)
Colitis , Hepatitis , Lactobacillus plantarum , Selenio , Ratones , Animales , Lactobacillus plantarum/metabolismo , Sulfato de Dextran/efectos adversos , Selenio/farmacología , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Colon/metabolismo , Citocinas/metabolismo , Hepatitis/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
11.
Curr Res Food Sci ; 7: 100583, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37691695

RESUMEN

Changes in flavor volatiles of three colored wheat grains (black, green, and yellow) after cooking were detected via gas chromatography-ion migration spectrometry (GC-IMS) to explore corresponding volatile flavor traits. A total of 52 volatile chemicals were spotted among these cooked wheat grains, including 30 aldehydes (accounting for 73.86-83.78%), 11 ketones (9.53-16.98%), 3 alcohols (0.88-1.21%), 4 furans (4.82-7.44%), 2 esters (0.28-0.42%), and 2 pyrazines (0.18-0.32%). Aldehydes, ketones, and furans were the main volatile compounds in three different cooked wheat. For black-colored wheat, the relative contents of benzene acetaldehyde, benzaldehyde, 2-methyl butanal, and 3-methyl butanal were much higher (p < 0.05). For green-colored wheat, the relative contents of nonanal, 2-pentyl furan, (E)-hept-2-enal, 2-butanone, and acetone were significantly higher (p < 0.05). For yellow-colored wheat, the relative amounts of heptanal, hexanal, and pentanal were much higher (p < 0.05). The overall volatile substances of the three cooked wheat grains might be classified by GC-IMS data coupled with principal component analysis and heatmap clustering analysis. A reliable forecast set was established through orthogonal partial least squares-discriminant analysis (OPLS-DA), and 22 differential volatile compounds were screened out based on variable importance in projection (VIP) being higher than 1.0, as flavor markers for distinguishing the three cooked wheat grains. These results suggest that GC-IMS could be used for characterizing the flavor volatiles of different colored wheat, and the findings could contribute certain information for understand the aroma traits in different colored cooked wheat and related products in the future.

12.
Theranostics ; 13(12): 4138-4165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554286

RESUMEN

Neurodegenerative diseases are characterized by the progressive loss of neurons and intricate interactions between different cell types within the affected regions. Reliable biomarkers that can accurately reflect disease activity, diagnose, and monitor the progression of neurodegenerative diseases are crucial for the development of effective therapies. However, identifying suitable biomarkers has been challenging due to the heterogeneous nature of these diseases, affecting specific subsets of neurons in different brain regions. One promising approach for promoting brain regeneration and recovery involves the transplantation of mesenchymal stem cells (MSCs). MSCs have demonstrated the ability to modulate the immune system, promote neurite outgrowth, stimulate angiogenesis, and repair damaged tissues, partially through the release of their extracellular vesicles (EVs). MSC-derived EVs retain some of the therapeutic characteristics of their parent MSCs, including their ability to regulate neurite outgrowth, promote angiogenesis, and facilitate tissue repair. This review aims to explore the potential of MSC-derived EVs as an emerging therapeutic strategy for neurodegenerative diseases, highlighting their role in modulating disease progression and promoting neuronal recovery. By elucidating the mechanisms by which MSC-derived EVs exert their therapeutic effects, we can advance our understanding and leverage their potential for the development of novel treatment approaches in the field of neurodegenerative diseases.


Asunto(s)
Vesículas Extracelulares , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/metabolismo , Vesículas Extracelulares/metabolismo , Encéfalo , Células Madre Mesenquimatosas/metabolismo
13.
Front Nutr ; 10: 1118156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998914

RESUMEN

Introduction: Fortification of cereal products with natural plant extract is an interesting approach to fulfill the dietary requirement of the people. Materials and methods: Peels of pomegranate (rich source of natural compounds) were cut into small pieces and dried in three different methods such as solar drying (SOD), oven drying (OD), and sun drying (SUD). The fine powder was prepared and proximate compositions (protein, ash, moisture, fats, fiber, and carbohydrates), minerals (zinc, iron, calcium, and potassium), total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity (DPPH) of the pomegranate peel powder (PP) were evaluated. Fine wheat flour (FWF) was fortified with different concentrations (3, 6, 8, 10, and 12 g) of PP powder, cookies were prepared and all the above analysis along with physical parameters (weight, width, thickness, spread ration) and sensory analysis were conducted. Cookies without PP powder were served as control. Results and discussion: Results showed that a SOD was the best for drying PP powder in terms of compositional analysis. Addition of PP powder significantly (P < 0.05) enhanced the nutritional value, minerals profile and physical attributes of the fortified cookies. Sensory analysis of fortified cookies indicated that the cookies were acceptable to the sensory panel. Therefore, in conclusion, PP powder dried by SOD method could be used commercially in baking industries to provide nutritional enriched cookies to fulfill the dietary requirements of the people.

14.
Molecules ; 28(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36677658

RESUMEN

Globally, millions of people suffer from poor wound healing, which is associated with higher mortality rates and higher healthcare costs. There are several factors that can complicate the healing process of wounds, including inadequate conditions for cell migration, proliferation, and angiogenesis, microbial infections, and prolonged inflammatory responses. Current therapeutic methods have not yet been able to resolve several primary problems; therefore, their effectiveness is limited. As a result of their remarkable properties, bio-based materials have been demonstrated to have a significant impact on wound healing in recent years. In the wound microenvironment, bio-based materials can stimulate numerous cellular and molecular processes that may enhance healing by inhibiting the growth of pathogens, preventing inflammation, and stimulating angiogenesis, potentially converting a non-healing environment to an appropriately healing one. The aim of this present review article is to provide an overview of the mechanisms underlying wound healing and its pathophysiology. The development of bio-based nanomaterials for chronic diabetic wounds as well as novel methodologies for stimulating wound healing mechanisms are also discussed.


Asunto(s)
Diabetes Mellitus , Nanoestructuras , Humanos , Diabetes Mellitus/terapia , Cicatrización de Heridas , Movimiento Celular , Inflamación
15.
Front Nutr ; 10: 1309963, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274211

RESUMEN

Introduction: Cornus officinalis sieb. et zucc, a deciduous tree or shrub, is renowned for its "Cornus flesh" fruit, which is widely acknowledged for its medicinal value when matured and dried. Leveraging C. officinalis as a foundational ingredient opens avenues for the development of environmentally friendly health foods, ranging from beverages and jams to preserves and canned products. Packed with diverse bioactive compounds, this species manifests a spectrum of pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, immunomodulatory, neuroprotective, and cardiovascular protective properties. Methods: This study employs CiteSpace visual analysis software and a bibliometric analysis platform, drawing upon the Web of Science (WOS) database for literature spanning the last decade. Through a comprehensive analysis of available literature from WOS and Google Scholar, we present a thorough summary of the health benefits, phytochemistry, active compounds, and pharmacological effects of C. officinalis. Particular emphasis is placed on its potential in developing functional drugs and foods. Results and Discussion: While this review enhances our understanding of C. officinalis as a prospective therapeutic agent, its clinical applicability underscores the need for further research and clinical studies to validate findings and establish safe and effective clinical applications.

16.
Front Nutr ; 9: 1024309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451740

RESUMEN

Sturgeons are a type of subcold water fish distributed in eastern Europe, on both sides of the North Pacific, in eastern Asia, in western North America, and on the east coast of North America. Its production capacity is strong, and it is easy to breed. However, the sturgeon industry has the problems of a single product structure, a short industrial chain and poor market sales. In this context, developing the sturgeon industry is crucial to research the nutritional value of sturgeon processing byproducts and developing diversified products. Therefore, this paper summarizes the research on the nutritional value of sturgeon processing byproducts and the current situation of processing and utilization over the past 10 years. First, CiteSpace visual analysis software and the bibliometric analysis platform were used to analyze the status of sturgeon research. The Web of Science (WOS) database was used as the literature source to fit the keywords of sturgeon literature in the past ten years. After excluding the two keywords sturgeon and sturgeon meat, the relevant literature is analyzed and sorted, focusing on the literature in the last five years. Second, a comprehensive and in-depth review (sturgeon, processing, byproducts as the keywords to search Google Scholar and Web of Science) was conducted on the research of the nutritional components contained in sturgeon and the processing of nutritional components in byproducts to provide a reliable reference for the research and processing of the sturgeon industry.

17.
Foods ; 11(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36140923

RESUMEN

This study investigated the possible mechanism of softening and senescence of blueberry after harvest using chitosan/thyme oil coating combined with UV-C (short wave ultraviolet irradiation) treatment. On the 56th day of storage, the CBP, cellulose, and hemicellulose contents in the chitosan/thyme oil coating +UV-C-treated group were 1.41, 1.65, and 1.20 times higher than those in the control group. Compared with the control group, the activities of polygalacturonase (PG), pectin methylesterase (PME), ß-glucosidase (ß-Gal), and cellulose (Cx) were significantly reduced (p < 0.05) after chitosan/thyme oil coating +UV-C, and their maximum values decreased by 5.41 µg/h g, 5.40 U/g, 12.41 U/g, and 3.85 µg/h g, respectively. Moreover, chitosan/thyme oil coating combined with UV-C treatment inhibited the gene expression of PG, PME, Cx, and ß-Gal and then regulated the decrease in PG, PME, Cx, and ß-Gal activities, inhibited the degradation of cell wall polysaccharides, and delayed the softening and senescence of postharvest blueberries. The results showed that chitosan/thyme oil coating, UV-C, and chitosan/thyme oil coating + UV-C could significantly inhibit postharvest softening of blueberry; chitosan/thyme oil coating +UV-C had the best effect.

18.
Front Chem ; 10: 944793, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105311

RESUMEN

In the presence of dry ice, a series of graphitic materials with carboxylated edges (ECGs) were synthesized by ball milling graphite for varied times (24, 36, and 46 h). The influence of carboxylation on the physiochemical characteristics and electrochemical performance as effective electrodes for supercapacitors were assessed and compared with pure graphite. Several characterization techniques were employed to investigate into the morphology, texture, microstructure, and modification of the materials. Due to its interconnected micro-mesoporous carbon network, which is vital for fast charge-discharge at high current densities, storing static charges, facilitating electrolyte transport and diffusion, and having excellent rate performance, the ECG-46 electrode among the investigated samples achieved the highest specific capacitance of 223 F g-1 at 0.25 A g-1 current density and an outstanding cycle stability, with capacitance retention of 90.8% for up to 10,000 cycles. Furthermore, the symmetric supercapacitor device based on the ECG-46 showed a high energy density of 19.20 W h kg-1 at 450.00 W kg-1 power density. With these unique features, ball milling of graphitic material in dry ice represents a promising approach to realize porous graphitic material with oxygen functionalities as active electrodes.

19.
Bioinorg Chem Appl ; 2022: 7772305, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992048

RESUMEN

Nutritional overload in the form of high-fat and nonglycolysis sugar intake contributes towards the accelerated creation of reactive oxygen species (ROS), hyperglycemia, and dyslipidemia. Glucose absorption and its subsequent oxidation processes in fat and muscle tissues alter as a consequence of these modifications. Insulin resistance (IR) caused glucose transporter 4 (GLUT4) translocation to encounter a challenge that manifested itself as changes in glycolytic pathways and insulin signaling. We previously found that beta (ß)-sitosterol reduces IR in fat tissue via IRS-1/PI3K/Akt facilitated signaling due to its hypolipidemic and hypoglycemic activity. The intention of this research was to see whether the phytosterol ß-sitosterol can aid in the translocation of GLUT4 in rats fed on high-fat diet (HFD) and sucrose by promoting Rab/IRAP/Munc 18 signaling molecules. The rats were labeled into four groups, namely control rats, HFD and sucrose-induced diabetic control rats, HFD and sucrose-induced diabetic rats given oral dose of 20 mg/kg body wt./day of ß-sitosterol treatment for 30 days, and HFD and sucrose-induced diabetic animals given oral administration of 50 mg/kg body wt./day metformin for 30 days. Diabetic rats administered with ß-sitosterol and normalized the titers of blood glucose, serum insulin, serum testosterone, and the status of insulin tolerance and oral glucose tolerance. In comparison with the control group, ß-sitosterol effectively regulated both glycolytic and gluconeogenesis enzymes. Furthermore, qRT-PCR analysis of the mRNA levels of key regulatory genes such as SNAP23, VAMP-2, syntaxin-4, IRAP, vimentin, and SPARC revealed that ß-sitosterol significantly regulated the mRNA levels of the above genes in diabetic gastrocnemius muscle. Protein expression analysis of Rab10, IRAP, vimentin, and GLUT4 demonstrated that ß-sitosterol had a positive effect on these proteins, resulting in effective GLUT4 translocation in skeletal muscle. According to the findings, ß-sitosterol reduced HFD and sucrose-induced IR and augmented GLUT4 translocation in gastrocnemius muscle through insulin signaling modulation via Rab/IRAP/Munc 18 and glucose metabolic enzymes. The present work is the first of its kind to show that ß-sitosterol facilitates GLUT4 vesicle fusion on the plasma membrane via Rab/IRAP/Munc 18 signaling molecules in gastrocnemius muscle.

20.
Nutrients ; 14(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35889889

RESUMEN

Diabetes mellitus has become a troublesome and increasingly widespread condition. Treatment strategies for diabetes prevention in high-risk as well as in affected individuals are largely attributed to improvements in lifestyle and dietary control. Therefore, it is important to understand the nutritional factors to be used in dietary intervention. A decreased risk of diabetes is associated with daily intake of millet-based foods. Pearl millet is a highly nutritious grain, nutritionally comparable and even superior in calories, protein, vitamins, and minerals to other large cereals, although its intake is confined to lower income segments of society. Pearl millet contains phenolic compounds which possess antidiabetic activity. Thus, it can be used to prepare a variety of food products for diabetes mellitus. Moreover, it also has many health benefits, including combating diabetes mellitus, cancer, cardiovascular conditions, decreasing tumour occurrence, lowering blood pressure, heart disease risk, cholesterol, and fat absorption rate. Therefore, the current review addresses the role of pearl millet in managing diabetes.


Asunto(s)
Diabetes Mellitus , Pennisetum , Digestión , Grano Comestible/química , Humanos , Pennisetum/metabolismo , Fenoles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA