Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(7): e2302893, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38060694

RESUMEN

Bandages for daily wounds are the most common medical supplies, but there are still ingrained defects in their appearance, comfort, functions, as well as environmental pollution. Here, novel bandages based on bacterial cellulose (BC) membrane for wound monitoring and advanced wound management are developed. The BC membrane is combined with silver nanowires (AgNWs) by using vacuum filtration method to achieve transparent, ultrathin (≈7 µm), breathable (389.98-547.79 g m-2  d-1 ), and sandwich-structured BC/AgNWs bandages with superior mechanical properties (108.45-202.35 MPa), antibacterial activities against Escherichia coli and Staphylococcus aureus, biocompatibility, and conductivity (9.8 × 103 -2.0 × 105  S m-1 ). Significantly, the BC/AgNWs bandage is used in the electrical stimulation (direct current, 600  microamperes for 1 h every other day) treatment of full-thickness skin defect in rats, which obviously promotes wound healing by increasing the secretion of vascular endothelial growth factor (VEGF). The BC bandage is used for monitoring wounds and achieve a high accuracy of 94.7% in classifying wound healing stages of hemostasis, inflammation, proliferation, and remodeling, by using a convolutional neural network. The outcomes of this study not only provide two BC-based bandages as multifunctional wound management, but also demonstrate a new strategy for the development of the next generation of smart bandage.


Asunto(s)
Celulosa , Nanocables , Ratas , Animales , Plata , Factor A de Crecimiento Endotelial Vascular , Antibacterianos , Vendajes , Estimulación Eléctrica
2.
ACS Nano ; 17(12): 11466-11480, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37201179

RESUMEN

Intratumoral pathogens can contribute to cancer progression and affect therapeutic response. Fusobacterium nucleatum, a core pathogen of colorectal cancer (CRC), is an important cause of low therapeutic efficacy and metastasis. Thus, the modulation of intratumoral pathogens may provide a target for cancer therapy and metastasis inhibition. Herein, we propose an intratumoral F. nucleatum-modulating strategy for enhancing the therapeutic efficacy of CRC and inhibiting lung metastasis by designing an antibacterial nanoplatform (Au@BSA-CuPpIX), which produced reactive oxygen species (ROS) under ultrasound and exhibited strong antibacterial activity. Importantly, Au@BSA-CuPpIX reduced the levels of apoptosis-inhibiting proteins by inhibiting intratumoral F. nucleatum, thereby enhancing ROS-induced apoptosis. In vivo results demonstrated that Au@BSA-CuPpIX effectively eliminated F. nucleatum to enhance the therapeutic efficacy of sonodynamic therapy (SDT) for orthotopic CRC and inhibit lung metastasis. Notably, entrapped gold nanoparticles reduced the phototoxicity of metalloporphyrin accumulated in the skin during tumor treatment, preventing severe inflammation and damage to the skin. Therefore, this study proposes a strategy for the elimination of F. nucleatum in CRC to enhance the therapeutic effect of SDT, thus providing a promising paradigm for improving cancer treatment with fewer toxic side effects and promoting the clinical translational potential of SDT.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas del Metal , Humanos , Fusobacterium nucleatum/fisiología , Neoplasias Colorrectales/tratamiento farmacológico , Oro/uso terapéutico , Especies Reactivas de Oxígeno , Nanopartículas del Metal/uso terapéutico
3.
J Nanobiotechnology ; 21(1): 72, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859296

RESUMEN

BACKGROUND: The development of multidrug resistance (MDR) during postoperative chemotherapy for colorectal cancer substantially reduces therapeutic efficacy. Nanostructured drug delivery systems (NDDSs) with modifiable chemical properties are considered promising candidates as therapies for reversing MDR in colorectal cancer cells. Selenium-doped manganese phosphate (Se-MnP) nanoparticles (NPs) that can reverse drug resistance through sustained release of selenium have the potential to improve the chemotherapy effect of colorectal cancer. RESULTS: Se-MnP NPs had an organic-inorganic hybrid composition and were assembled from smaller-scale nanoclusters. Se-MnP NPs induced excessive ROS production via Se-mediated activation of the STAT3/JNK pathway and a Fenton-like reaction due to the presence of manganese ions (Mn2+). Moreover, in vitro and in vivo studies demonstrated Se-MnP NPs were effective drug carriers of oxaliplatin (OX) and reversed multidrug resistance and induced caspase-mediated apoptosis in colorectal cancer cells. OX@Se-MnP NPs reversed MDR in colorectal cancer by down-regulating the expression of MDR-related ABC (ATP binding cassette) transporters proteins (e.g., ABCB1, ABCC1 and ABCG2). Finally, in vivo studies demonstrated that OX-loaded Se-MnP NPs significantly inhibited proliferation of OX-resistant HCT116 (HCT116/DR) tumor cells in nude mice. CONCLUSIONS: OX@Se-MnP NPs with simple preparation and biomimetic chemical properties represent promising candidates for the treatment of colorectal cancer with MDR.


Asunto(s)
Neoplasias Colorrectales , Selenio , Animales , Ratones , Catálisis , Portadores de Fármacos , Ratones Desnudos , Humanos , Línea Celular Tumoral , Resistencia a Antineoplásicos
4.
Small Methods ; 7(4): e2201566, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36811239

RESUMEN

Wearable electronics are garnering growing interest in various emerging fields including intelligent sensors, artificial limbs, and human-machine interfaces. A remaining challenge is to develop multisensory devices that can conformally adhere to the skin even during dynamic-moving environments. Here, a single electronic tattoo (E-tattoo) based on a mixed-dimensional matrix network, which integrates two-dimensional  MXene nanosheets and one-dimensional cellulose nanofibers/Ag nanowires, is presented for multisensory integration. The multidimensional configurations endow the E-tattoo with excellent multifunctional sensing capabilities including temperature, humidity, in-plane strain, proximity, and material identification. In addition, benefiting from the satisfactory rheology of hybrid inks, the E-tattoos are able to be fabricated through multiple facile strategies including direct writing, stamping, screen printing, and three-dimensional printing on various hard/soft substrates. Especially, the E-tattoo with excellent triboelectric properties also can serve as a power source for activating small electronic devices. It is believed that these skin-conformal E-tattoo systems can provide a promising platform for next-generation wearable and epidermal electronics.


Asunto(s)
Tatuaje , Humanos , Tatuaje/métodos , Piel , Electrónica , Epidermis
5.
MedComm (2020) ; 3(4): e192, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36514780

RESUMEN

Inorganic nanoparticles have extensively revolutionized the effectiveness of cancer therapeutics due to their distinct physicochemical properties. However, the therapeutic efficiency of inorganic nanoparticles is greatly hampered by the complex tumor microenvironment, patient heterogeneity, and systemic nonspecific toxicity. The biomimetic technology based on biological membranes (cell- or bacteria-derived membranes) is a promising strategy to confer unique characteristics to inorganic nanoparticles, such as superior biocompatibility, prolonged circulation time, immunogenicity, homologous tumor targeting, and flexible engineering approaches on the surface, resulting in the enhanced therapeutic efficacy of inorganic nanoparticles against cancer. Therefore, a greater push toward developing biomimetic-based nanotechnology could increase the specificity and potency of inorganic nanoparticles for effective cancer treatment. In this review, we summarize the recent advances in biological membrane-coated inorganic nanoparticles in cancer precise therapy and highlight the different types of engineered approaches, applications, mechanisms, and future perspectives. The surface engineering of biological membrane can greatly enhance their targeting, intelligence, and functionality, thereby realizing stronger tumor therapy effects. Further advances in materials science, biomedicine, and oncology can facilitate the clinical translation of biological membrane-coated inorganic nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...