Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Diagnostics (Basel) ; 14(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38611599

BACKGROUND: Menstrual blood (MB) is a convenient specimen type that can be self-collected easily and non-invasively by women. This study assessed the potential application of MB as a diagnostic specimen to detect genital tract infections (GTIs) and human papillomavirus (HPV) infections in women. METHOD: Genomic DNA was extracted from MB samples. Pacific Bioscience (Pacbio) 16S ribosomal DNA (rDNA) high-fidelity (HiFi) long-read sequencing and HPV PCR were performed. RESULTS: MB samples were collected from women with a pathological diagnosis of CIN1, CIN2, CIN3 or HPV infection. The sensitivity and positive predictive value (PPV) of high-risk HPV detection using MB were found to be 66.7%. A shift in vaginal flora and a significant depletion in Lactobacillus spp. in the vaginal microbiota communities were observed in the MB samples using 16S rDNA sequencing. CONCLUSIONS: In this study, we demonstrated that MB is a proper diagnostic specimen of consideration for non-invasive detection of HPV DNA and genotyping using PCR and the diagnosis of GTIs using metagenomic next-generation sequencing (mNGS). MB testing is suitable for all women who menstruate and this study has opened up the possibility of the use of MB as a diagnostic specimen to maintain women's health.

2.
Reprod Fertil Dev ; 35(18): 723-732, 2023 Nov.
Article En | MEDLINE | ID: mdl-37967584

Context Bone morphogenetic proteins (BMPs) play an important role in the uteri. Repulsive guidance molecule b (RGMb; a.k.a. Dragon) has been confirmed as the coreceptor of BMPs to function through drosophila mothers against decapentaplegic protein (Smads) and mitogen-activated protein kinases (MAPK) pathways. We hypothesise that RGMb regulates the uterine function through the Smads and MAPK pathways. Aims This study aimed to investigate the expression of RGMb in goat uteri and the potential role of RGMb in the endometrial epithelial cells (EECs). Methods The localisation of RGMb in goat uterine tissues was detected by immunohistochemistry (IHC), EECs were isolated and transfected with siRNA to investigate the role of RGMb in proliferation, and apoptosis. The expression levels of Smads and MAPK members was measured by western blot (WB) and real-time PCR (RT-PCR). Key results IHC showed that RGMb was localised in goat endometrial luminal cells, glandular epithelial cells, and circular muscle fibres, but not in stromal cells. RT-PCR results showed that treatment with RGMb siRNA suppressed the expressions of proliferation-related genes cyclin D1 (CCND1 , P =0.0291), cyclin-dependent kinase 2 (CDK2 P =0.0107), and proliferating cell nuclear antigen (PCNA, P =0.0508), leading to the reduced viability of EECs (P =0.0010). WB results showed that the expression ratio of cleaved-caspase 3/caspase 3 (P =0.0013) was markedly increased after RGMb siRNA transfection. Likewise, the level of phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2, P =0.0068) and p-Smad1/5/8 (P =0.0011) decreased significantly, while there were no appreciable differences in the level of p-P38 MAPK expression (P >0.05). Conclusions RGMb might participate in the regulation of cell proliferation and apoptosis through Smads and ERK signalling pathways in goat EECs. Implications RGMb is involved in regulating the proliferation and apoptosis in goat endometrial epithelial cells.


Goats , Mitogen-Activated Protein Kinases , Female , Animals , Caspase 3/metabolism , Mitogen-Activated Protein Kinases/metabolism , Uterus/metabolism , Epithelial Cells/metabolism , Apoptosis , Cell Proliferation , RNA, Small Interfering
3.
Cells ; 12(10)2023 05 15.
Article En | MEDLINE | ID: mdl-37408227

Adiponectin (APN) is an essential adipokine for a variety of reproductive processes. To investigate the role of APN in goat corpora lutea (CLs), CLs and sera from different luteal phases were collected for analysis. The results showed that the APN structure and content had no significant divergence in different luteal phases both in CLs and sera; however, high molecular weight APN was dominant in serum, while low molecular weight APN was more present in CLs. The luteal expression of both AdipoR1/2 and T-cadherin (T-Ca) increased on D11 and 17. APN and its receptors (AdipoR1/2 and T-Ca) were mainly expressed in goat luteal steroidogenic cells. The steroidogenesis and APN structure in pregnant CLs had a similar model as in the mid-cycle CLs. To further explore the effects and mechanisms of APN in CLs, steroidogenic cells from pregnant CLs were isolated to detect the AMPK-mediated pathway by the activation of APN (AdipoRon) and knockdown of APN receptors. The results revealed that P-AMPK in goat luteal cells increased after incubation with APN (1 µg/mL) or AdipoRon (25 µM) for 1 h, and progesterone (P4) and steroidogenic proteins levels (STAR/CYP11A1/HSD3B) decreased after 24 h. APN did not affect the steroidogenic protein expression when cells were pretreated with Compound C or SiAMPK. APN increased P-AMPK and reduced the CYP11A1 expression and P4 levels when cells were pretreated with SiAdipoR1 or SiT-Ca, while APN failed to affect P-AMPK, the CYP11A1 expression or the P4 levels when pretreated with SiAdipoR2. Therefore, the different structural forms of APN in CLs and sera may possess distinct functions; APN might regulate luteal steroidogenesis through AdipoR2 which is most likely dependent on AMPK.


AMP-Activated Protein Kinases , Adiponectin , Pregnancy , Animals , Female , Adiponectin/metabolism , AMP-Activated Protein Kinases/metabolism , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Goats/metabolism , Corpus Luteum
4.
Theriogenology ; 198: 292-304, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36634443

This study aimed to investigate the role of NR4A1 in forskolin (FSK)-induced granulosa cell (GC) differentiation and PGF2α-induced granulosa-lutein cell (GLC) regression. For experiment 1, primary porcine GCs were pre-cultured for 6 d before induced-differentiation by FSK with or without siNR4A1, and changes in GC proliferation, lipid droplets (LDs), and P4 level were detected. For experiment 2, the GLC model was established by FSK as in experiment 1, and then PGF2α was utilized to induce GLC regression with or without siNR4A1, changes in P4 secretion, apoptosis proteins, and associated signaling pathway members were detected. Results showed that in experiment 1, FSK up-regulated NR4A1 expression during GC differentiation and decreased GC proliferation activity, which was reversed by siNR4A1. siNR4A1 inhibited the FSK-induced decreases in Cyclin B1/D1 and CDK1/2 mRNA abundances, and increases in P21/P27 mRNA abundances, and FSK-induced LD accumulation. FSK up-regulated P4 secretion and StAR, CYP11A1 and HSD3B expression, decreased CYP19A1 expression, which were reversed by siNR4A1 except for StAR expression. In experiment 2, PGF2α induced NR4A1 expression and reduced GLC viability, which were reversed by siNR4A1. Compared with PGF2α group, the levels of P4 secretion and StAR expression were higher in PGF2α+siNR4A1 group, while CYP11A1 and HSD3B expressions held at low levels. siNR4A1 inhibited PGF2α-induced expression of apoptosis proteins (caspase3, Bax, Fas, TNFa), ATF3, and phosphorylated MAPKs (ERK1/2, P38, JNK). In summary, NR4A1 is involved in regulating porcine GC differentiation and GLC regression as well as the changes in cell proliferation, apoptosis, steroidogenesis, and MAPK pathways, which provide a theoretical basis for further understanding of the mechanism of porcine luteal formation and regression.


Luteal Cells , Animals , Female , Cell Differentiation , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Granulosa Cells/metabolism , Luteal Cells/metabolism , Progesterone/metabolism , RNA, Messenger/metabolism , Swine , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
5.
Cell Death Dis ; 13(8): 722, 2022 08 18.
Article En | MEDLINE | ID: mdl-35982051

Sepsis is a life-threatening syndrome with disturbed host responses to severe infections, accounting for the majority of death in hospitalized patients. However, effective medicines are currently scant in clinics due to the poor understanding of the exact underlying mechanism. We previously found that blocking caspase-11 pathway (human orthologs caspase-4/5) is effective to rescue coagulation-induced organ dysfunction and lethality in sepsis models. Herein, we screened our existing chemical pools established in our lab using bacterial outer membrane vesicle (OMV)-challenged macrophages, and found 7-(diethylamino)-1-hydroxy-phenothiazin-3-ylidene-diethylazanium chloride (PHZ-OH), a novel phenothiazinium-based derivative, was capable of robustly dampening caspase-11-dependent pyroptosis. The in-vitro study both in physics and physiology showed that PHZ-OH targeted AP2-associated protein kinase 1 (AAK1) and thus prevented AAK1-mediated LPS internalization for caspase-11 activation. By using a series of gene-modified mice, our in-vivo study further demonstrated that administration of PHZ-OH significantly protected mice against sepsis-associated coagulation, multiple organ dysfunction, and death. Besides, PHZ-OH showed additional protection on Nlrp3-/- and Casp1-/- mice but not on Casp11-/-, Casp1/11-/-, Msr1-/-, and AAK1 inhibitor-treated mice. These results suggest the critical role of AAK1 on caspase-11 signaling and may provide a new avenue that targeting AAK1-mediated LPS internalization would be a promising therapeutic strategy for sepsis. In particular, PHZ-OH may serve as a favorable molecule and an attractive scaffold in future medicine development for efficient treatment of bacterial sepsis.


Lipopolysaccharides , Promethazine/pharmacology , Sepsis , Animals , Caspase 1 , Caspases/metabolism , Humans , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Protein Kinases , Protein Serine-Threonine Kinases , Pyroptosis , Sepsis/drug therapy , Sepsis/metabolism
6.
Invest Ophthalmol Vis Sci ; 62(9): 27, 2021 07 01.
Article En | MEDLINE | ID: mdl-34283211

Purpose: The purpose of this study was to determine whether retinal gap junctions (GJs) via connexin 36 (Cx36, mediating coupling of many retinal cell types) and horizontal cell (HC-HC) coupling, are involved in emmetropization. Methods: Guinea pigs (3 weeks old) were monocularly form deprived (FD) or raised without FD (in normal visual [NV] environment) for 2 days or 4 weeks; alternatively, they wore a -4 D lens (hyperopic defocus [HD]) or 0 D lens for 2 days or 1 week. FD and NV eyes received daily subconjunctival injections of a nonspecific GJ-uncoupling agent, 18-ß-Glycyrrhetinic Acid (18-ß-GA). The amounts of total Cx36 and of phosphorylated Cx36 (P-Cx36; activated state that increases cell-cell coupling), in the inner and outer plexiform layers (IPLs and OPLs), were evaluated by quantitative immunofluorescence (IF), and HC-HC coupling was evaluated by cut-loading with neurobiotin. Results: FD per se (excluding effect of light-attenuation) increased HC-HC coupling in OPL, whereas HD did not affect it. HD for 2 days or 1 week had no significant effect on retinal content of Cx36 or P-Cx36. FD for 4 weeks decreased the total amounts of Cx36 and P-Cx36, and the P-Cx36/Cx36 ratio, in the IPL. Subconjunctival 18-ß-GA induced myopia in NV eyes and increased the myopic shifts in FD eyes, while reducing the amounts of Cx36 and P-Cx36 in both the IPL and OPL. Conclusions: These results suggest that cell-cell coupling via GJs containing Cx36 (particularly those in the IPL) plays a role in emmetropization and form deprivation myopia (FDM) in mammals. Although both FD and 18-ß-GA induced myopia, they had opposite effects on HC-HC coupling. These findings suggest that HC-HC coupling in the OPL might not play a significant role in emmetropization and myopia development.


Connexins/metabolism , Emmetropia/physiology , Gap Junctions/metabolism , Hyperopia/metabolism , Myopia/metabolism , Retina/metabolism , Vitreous Body/metabolism , Animals , Conjunctiva/metabolism , Conjunctiva/pathology , Disease Models, Animal , Gap Junctions/pathology , Guinea Pigs , Hyperopia/pathology , Hyperopia/physiopathology , Myopia/pathology , Myopia/physiopathology , Retina/pathology , Retina/physiopathology , Sensory Deprivation , Vitreous Body/pathology , Gap Junction delta-2 Protein
7.
AMB Express ; 10(1): 195, 2020 Oct 30.
Article En | MEDLINE | ID: mdl-33125582

Streptococcus suis serotype 2 (SS2) is a serious zoonotic pathogen; it can lead to symptoms of streptococcal toxic shock syndrome (STSS) in humans and sepsis in pigs, and poses a great threat to public health. The SS2 MetQ gene deletion strain has attenuated antiphagocytosis, although the mechanism of antiphagocytosis and pathogenesis of MetQ in SS2 has remained unclear. In this study, stable isotope labeling by amino acids in cell culture (SILAC) based liquid chromatography-mass spectrometry (LC-MS) and subsequent bioinformatics analysis was used to determine differentially expressed proteins of RAW264.7 cells infected with △MetQ and ZY05719. Proteomic results were verified by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting for selected proteins. Further research was focused mainly on immune system processes related to downregulated proteins, such as Src and Ccl9, and actin cytoskeleton and endocytosis related upregulated proteins, like Pstpip1 and Ppp1r9b. The proteomic results in this study shed light on the mechanism of antiphagocytosis and innate immunity of macrophages infected with △MetQ and ZY05719, which might provide novel targets to prevent or control the infection of SS2.

8.
Virulence ; 11(1): 825-838, 2020 12.
Article En | MEDLINE | ID: mdl-32614642

STREPTOCOCCUS SUIS: serotype 2 (SS2) is a serious zoonotic pathogen which causes symptoms of streptococcal toxic shock syndrome (STSS) and septicemia; these symptoms suggest that SS2 may have evade innate immunity. Phagocytosis is an important innate immunity process where phagocytosed pathogens are killed by lysosome enzymes, reactive oxygen, and nitrogen species, and acidic environments in macrophages following engulfment. A previously constructed mutant SS2 library was screened, revealing 13 mutant strains with decreased phagocytic resistance. Through inverse PCR, the transposon insertion sites were determined. Through bioinformatic analysis, the 13 disrupted genes were identified as Cps2F, 3 genes belonging to ABC transporters, WalR, TehB, rpiA, S-transferase encoding gene, prs, HsdM, GNAT family N-acetyltransferase encoding gene, proB, and upstream region of DnaK. Except for the capsular polysaccharide biosynthesis associated Cps2F, the other genes had not been linked to a role in anti-phagocytosis. The survival ability in macrophages and whole blood of randomly picked mutant strains were significantly impaired compared with wild-type ZY05719. The virulence of the mutant strains was also attenuated in a mouse infection model. In the WalR mutant, the transcription of HP1065 decreased significantly compared with wild-type strain, indicating WalR might regulated HP1065 expression and contribute to the anti-phagocytosis of SS2. In conclusion, we identified 13 genes that influenced the phagocytosis resistant ability of SS2, and many of these genes have not been reported to be associated with resistance to phagocytosis. Our work provides novel insight into resistance to phagocytosis, and furthers our understanding of the pathogenesis mechanism of SS2.


DNA Transposable Elements , Genes, Bacterial , Macrophages/microbiology , Phagocytosis , Streptococcus suis/genetics , Animals , Disease Models, Animal , Female , Gene Library , Immune Evasion , Macrophages/immunology , Mice , Mice, Inbred BALB C , Mutation , Serogroup , Specific Pathogen-Free Organisms , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcus suis/classification , Streptococcus suis/immunology , Virulence/genetics
9.
Proc Natl Acad Sci U S A ; 115(30): E7091-E7100, 2018 07 24.
Article En | MEDLINE | ID: mdl-29987045

Worldwide, myopia is the leading cause of visual impairment. It results from inappropriate extension of the ocular axis and concomitant declines in scleral strength and thickness caused by extracellular matrix (ECM) remodeling. However, the identities of the initiators and signaling pathways that induce scleral ECM remodeling in myopia are unknown. Here, we used single-cell RNA-sequencing to identify pathways activated in the sclera during myopia development. We found that the hypoxia-signaling, the eIF2-signaling, and mTOR-signaling pathways were activated in murine myopic sclera. Consistent with the role of hypoxic pathways in mouse model of myopia, nearly one third of human myopia risk genes from the genome-wide association study and linkage analyses interact with genes in the hypoxia-inducible factor-1α (HIF-1α)-signaling pathway. Furthermore, experimental myopia selectively induced HIF-1α up-regulation in the myopic sclera of both mice and guinea pigs. Additionally, hypoxia exposure (5% O2) promoted myofibroblast transdifferentiation with down-regulation of type I collagen in human scleral fibroblasts. Importantly, the antihypoxia drugs salidroside and formononetin down-regulated HIF-1α expression as well as the phosphorylation levels of eIF2α and mTOR, slowing experimental myopia progression without affecting normal ocular growth in guinea pigs. Furthermore, eIF2α phosphorylation inhibition suppressed experimental myopia, whereas mTOR phosphorylation induced myopia in normal mice. Collectively, these findings defined an essential role of hypoxia in scleral ECM remodeling and myopia development, suggesting a therapeutic approach to control myopia by ameliorating hypoxia.


Extracellular Matrix/metabolism , Hypoxia , Myopia/therapy , Sclera/metabolism , Signal Transduction , Animals , Disease Models, Animal , Eukaryotic Initiation Factor-2/metabolism , Extracellular Matrix/pathology , Eye Proteins/metabolism , Guinea Pigs , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice , Myopia/metabolism , Myopia/pathology , Sclera/blood supply , Sclera/pathology , TOR Serine-Threonine Kinases/metabolism
10.
FEMS Microbiol Lett ; 363(16)2016 08.
Article En | MEDLINE | ID: mdl-27388015

Direct interaction between pathogens and host cells often is a prerequisite for colonization, infection and dissemination. Regulated production of capsular polysaccharide (CPS), which is made of hyaluronic acid, is essential for the pathogenicity of Streptococcus equi subsp. Zooepidemicus (SEZ). Here, we constructed a CPS-deleted mutant and analyzed it along with the parental wild-type strain in attachment and invasion of mammalian epithelial and endothelial cell lines. The CPS-deleted mutant exhibited significant increase in adherence and invasion by several orders of magnitude compared with the wild-type strain through quantitative analysis and electron microscopy observation. After the wild-type strain was recovered from invaded cells, its morphology was analyzed by visual methods and scanning electron microscopy, which revealed that its capsule was almost completely absent. Capsule measurements showed a similar result in which CPS production was nearly attenuated to the same extent as in the CPS-deleted mutant. qPCR assays revealed a marked reduction in the transcriptional levels of the CPS biosynthesis genes, has operon. Moreover, the repression in capsular production was stable inheritance. Our findings indicate that SEZ is a facultative intracellular bacterium, capsule attenuation in SEZ contributes to attachment and invasion in interactions with host cells, and the active regulation of capsule breakdown is controlled by SEZ during internalization.


Bacterial Adhesion , Bacterial Capsules/physiology , Endothelial Cells/microbiology , Epithelial Cells/microbiology , Streptococcus equi/genetics , Streptococcus equi/physiology , Animals , Bacterial Capsules/genetics , Bacterial Capsules/ultrastructure , Caco-2 Cells , Cell Line , Host-Pathogen Interactions , Humans , Hyaluronic Acid , Microscopy, Electron, Scanning , Operon , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/metabolism , Streptococcus equi/cytology , Streptococcus equi/pathogenicity
11.
Wei Sheng Yan Jiu ; 36(1): 124-7, 2007 Jan.
Article Zh | MEDLINE | ID: mdl-17424866

Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor, is mainly produced by the stomach, but its expression has also been demonstrated in many other tissues. It has diverse biological effects. ghrelin stimulates food intake and regulates energy homeostasis through activating the expression of the orexigenic neuropeptides NPY (neuropeptide Y)/AGRP (agouti-related protein) in hypothalamic neurons, by which it plays a key role in obesity pathogenesis. This article simply introduces the recent research on its molecular structure, distribution, physiological effects and highlights the relationship between ghrelin and food intake as well as obesity.


Eating/physiology , Ghrelin , Obesity/physiopathology , Ghrelin/genetics , Ghrelin/metabolism , Ghrelin/physiology , Humans
...