Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 285(2): 1414-23, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19893054

RESUMEN

DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs. Furthermore, Ku- and DNA-promoted assembly of a DNA-PKcs dimer facilitates trans-autophosphorylation at the DSB. The resulting site-specific autophosphorylation induces a large conformational change that opens DNA-PKcs and promotes its release from DNA ends. These results show how protein and DNA interactions initiate large Ku and DNA-PKcs rearrangements to control DNA-PK biological functions as a macromolecular machine orchestrating assembly and disassembly of the initial NHEJ complex on DNA.


Asunto(s)
Antígenos Nucleares/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Antígenos Nucleares/química , Antígenos Nucleares/genética , ADN/química , ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Autoantígeno Ku , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología
2.
Evol Comput ; 17(4): 595-626, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19916779

RESUMEN

Abstract In many different fields, researchers are often confronted by problems arising from complex systems. Simple heuristics or even enumeration works quite well on small and easy problems; however, to efficiently solve large and difficult problems, proper decomposition is the key. In this paper, investigating and analyzing interactions between components of complex systems shed some light on problem decomposition. By recognizing three bare-bones interactions-modularity, hierarchy, and overlap, facet-wise models are developed to dissect and inspect problem decomposition in the context of genetic algorithms. The proposed genetic algorithm design utilizes a matrix representation of an interaction graph to analyze and explicitly decompose the problem. The results from this paper should benefit research both technically and scientifically. Technically, this paper develops an automated dependency structure matrix clustering technique and utilizes it to design a model-building genetic algorithm that learns and delivers the problem structure. Scientifically, the explicit interaction model describes the problem structure very well and helps researchers gain important insights through the explicitness of the procedure.


Asunto(s)
Algoritmos , Solución de Problemas
3.
Gen Physiol Biophys ; 28(2): 174-89, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19592714

RESUMEN

Flexibility between domains of proteins is often critical for function. These motions and proteins with large scale flexibility in general are often not readily amenable to conventional structural analysis such as X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR) or electron microscopy. A common evolution of a crystallography project, once a high resolution structure has been determined, is to postulate possible sights of flexibility. Here we describe an analysis tool using relatively inexpensive small angle X-ray scattering (SAXS) measurements to identify flexibility and validate a constructed minimal ensemble of models, which represent highly populated conformations in solution. The resolution of these results is sufficient to address the questions being asked: what kinds of conformations do the domains sample in solution? In our rigid body modeling strategy BILBOMD, molecular dynamics (MD) simulations are used to explore conformational space. A common strategy is to perform the MD simulation on the domains connections at very high temperature, where the additional kinetic energy prevents the molecule from becoming trapped in a local minimum. The MD simulations provide an ensemble of molecular models from which a SAXS curve is calculated and compared to the experimental curve. A genetic algorithm is used to identify the minimal ensemble (minimal ensemble search, MES) required to best fit the experimental data. We demonstrate the use of MES in several model and in four experimental examples.


Asunto(s)
Proteínas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Algoritmos , Proteínas Bacterianas/química , Proteínas Portadoras/química , Clostridium cellulolyticum , Clostridium thermocellum , Simulación por Computador , Elasticidad , Modelos Químicos , Modelos Moleculares , Polinucleótido 5'-Hidroxil-Quinasa/química , Conformación Proteica , Proteínas de Unión al ARN/química , Staphylococcus aureus
4.
Evol Comput ; 14(3): 345-80, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16903797

RESUMEN

Learning Classifier Systems (LCSs), such as the accuracy-based XCS, evolve distributed problem solutions represented by a population of rules. During evolution, features are specialized, propagated, and recombined to provide increasingly accurate subsolutions. Recently, it was shown that, as in conventional genetic algorithms (GAs), some problems require efficient processing of subsets of features to find problem solutions efficiently. In such problems, standard variation operators of genetic and evolutionary algorithms used in LCSs suffer from potential disruption of groups of interacting features, resulting in poor performance. This paper introduces efficient crossover operators to XCS by incorporating techniques derived from competent GAs: the extended compact GA (ECGA) and the Bayesian optimization algorithm (BOA). Instead of simple crossover operators such as uniform crossover or one-point crossover, ECGA or BOA-derived mechanisms are used to build a probabilistic model of the global population and to generate offspring classifiers locally using the model. Several offspring generation variations are introduced and evaluated. The results show that it is possible to achieve performance similar to runs with an informed crossover operator that is specifically designed to yield ideal problem-dependent exploration, exploiting provided problem structure information. Thus, we create the first competent LCSs, XCS/ECGA and XCS/BOA, that detect dependency structures online and propagate corresponding lower-level dependency structures effectively without any information about these structures given in advance.


Asunto(s)
Algoritmos , Clasificación/métodos , Biología Computacional/métodos , Modelos Genéticos , Inteligencia Artificial , Teorema de Bayes , Genética de Población , Mutación , Muestreo
5.
Artículo en Inglés | MEDLINE | ID: mdl-15686989

RESUMEN

Mass spectrometry data generated in differential profiling of complex protein samples are classically exploited using database searches. In addition, quantitative profiling is performed by various methods, one of them using isotopically coded affinity tags, where one typically uses a light and a heavy tag. Here, we present a new algorithm, ICATcher, which detects pairs of light/heavy peptide MS/MS spectra independent of sequence databases. The method can be used for de novo sequencing and detection of posttranslational modifications. ICATcher is distributed as open source software.


Asunto(s)
Espectrometría de Masas/métodos , Péptidos/química , Algoritmos , Secuencia de Aminoácidos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...