Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Nature ; 586(7827): 145-150, 2020 10.
Article En | MEDLINE | ID: mdl-32968273

Natural products serve as chemical blueprints for most antibiotics in clinical use. The evolutionary process by which these molecules arise is inherently accompanied by the co-evolution of resistance mechanisms that shorten the clinical lifetime of any given class of antibiotics1. Virginiamycin acetyltransferase (Vat) enzymes are resistance proteins that provide protection against streptogramins2, potent antibiotics against Gram-positive bacteria that inhibit the bacterial ribosome3. Owing to the challenge of selectively modifying the chemically complex, 23-membered macrocyclic scaffold of group A streptogramins, analogues that overcome the resistance conferred by Vat enzymes have not been previously developed2. Here we report the design, synthesis, and antibacterial evaluation of group A streptogramin antibiotics with extensive structural variability. Using cryo-electron microscopy and forcefield-based refinement, we characterize the binding of eight analogues to the bacterial ribosome at high resolution, revealing binding interactions that extend into the peptidyl tRNA-binding site and towards synergistic binders that occupy the nascent peptide exit tunnel. One of these analogues has excellent activity against several streptogramin-resistant strains of Staphylococcus aureus, exhibits decreased rates of acetylation in vitro, and is effective at lowering bacterial load in a mouse model of infection. Our results demonstrate that the combination of rational design and modular chemical synthesis can revitalize classes of antibiotics that are limited by naturally arising resistance mechanisms.


Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Drug Design , Drug Resistance, Bacterial/drug effects , Streptogramin Group A/chemical synthesis , Streptogramin Group A/pharmacology , Acetylation/drug effects , Acetyltransferases/genetics , Acetyltransferases/metabolism , Animals , Anti-Bacterial Agents/classification , Bacterial Load/drug effects , Binding Sites , Cryoelectron Microscopy , Female , In Vitro Techniques , Mice , Microbial Sensitivity Tests , Models, Molecular , RNA, Transfer/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Streptogramin Group A/chemistry , Streptogramin Group A/classification , Virginiamycin/analogs & derivatives , Virginiamycin/chemistry , Virginiamycin/metabolism
2.
ACS Chem Biol ; 15(8): 2137-2153, 2020 08 21.
Article En | MEDLINE | ID: mdl-32786289

Protein conformations are shaped by cellular environments, but how environmental changes alter the conformational landscapes of specific proteins in vivo remains largely uncharacterized, in part due to the challenge of probing protein structures in living cells. Here, we use deep mutational scanning to investigate how a toxic conformation of α-synuclein, a dynamic protein linked to Parkinson's disease, responds to perturbations of cellular proteostasis. In the context of a course for graduate students in the UCSF Integrative Program in Quantitative Biology, we screened a comprehensive library of α-synuclein missense mutants in yeast cells treated with a variety of small molecules that perturb cellular processes linked to α-synuclein biology and pathobiology. We found that the conformation of α-synuclein previously shown to drive yeast toxicity-an extended, membrane-bound helix-is largely unaffected by these chemical perturbations, underscoring the importance of this conformational state as a driver of cellular toxicity. On the other hand, the chemical perturbations have a significant effect on the ability of mutations to suppress α-synuclein toxicity. Moreover, we find that sequence determinants of α-synuclein toxicity are well described by a simple structural model of the membrane-bound helix. This model predicts that α-synuclein penetrates the membrane to constant depth across its length but that membrane affinity decreases toward the C terminus, which is consistent with orthogonal biophysical measurements. Finally, we discuss how parallelized chemical genetics experiments can provide a robust framework for inquiry-based graduate coursework.


Saccharomyces cerevisiae/drug effects , alpha-Synuclein/toxicity , Amino Acid Sequence , Humans , Mutation , Parkinson Disease/metabolism , Protein Conformation , Saccharomyces cerevisiae/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
3.
Science ; 366(6468): 1024-1028, 2019 11 22.
Article En | MEDLINE | ID: mdl-31754004

Sensing and responding to signals is a fundamental ability of living systems, but despite substantial progress in the computational design of new protein structures, there is no general approach for engineering arbitrary new protein sensors. Here, we describe a generalizable computational strategy for designing sensor-actuator proteins by building binding sites de novo into heterodimeric protein-protein interfaces and coupling ligand sensing to modular actuation through split reporters. Using this approach, we designed protein sensors that respond to farnesyl pyrophosphate, a metabolic intermediate in the production of valuable compounds. The sensors are functional in vitro and in cells, and the crystal structure of the engineered binding site closely matches the design model. Our computational design strategy opens broad avenues to link biological outputs to new signals.


Polyisoprenyl Phosphates/metabolism , Protein Engineering , Protein Multimerization , Proteins/chemistry , Sesquiterpenes/metabolism , Ankyrin Repeat , Binding Sites , Biosensing Techniques , Computational Biology , Computer Simulation , Crystallography, X-Ray , Ligands , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/metabolism , Models, Molecular , Proteins/genetics , Proteins/metabolism
...