Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Mar Pollut Bull ; 202: 116393, 2024 May.
Article En | MEDLINE | ID: mdl-38669855

Microplastics (MP) are found in marine sediments across the globe, but we are just beginning to understand their spatial distribution and assemblages. In this study, we quantified MP in Gulf of Maine, USA sediments. MP were extracted from 20 sediment samples, followed by polymer identification using Raman spectroscopy. We detected 27 polymer types and 1929 MP kg-1 wet sediment, on average. Statistical analyses showed that habitat, hydrodynamics, and station proximity were more important drivers of MP assemblages than land use or sediment characteristics. Stations closer to one another were more similar in their MP assemblages, tidal rivers had higher numbers of unique plastic polymers than open water or embayment stations, and stations closer to shore had higher numbers of MP. There was little evidence of relationships between MP assemblages and land use, sediment texture, total organic carbon, or contaminants.


Environmental Monitoring , Geologic Sediments , Hydrodynamics , Microplastics , Water Pollutants, Chemical , Geologic Sediments/chemistry , Maine , Microplastics/analysis , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 931: 172684, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38663629

Nitrogen isotopes (δ15N) have been used as an indicator of anthropogenic nitrogen loading at local and regional scales. We examined δ15N in fish from estuaries across the continental United States. In the summer of 2015, the U.S. Environmental Protection Agency's National Coastal Condition Assessment (NCCA) collected fish in 136 coastal waterbodies throughout the United States. Whole fish were analyzed by NCCA for metals, organic contaminants, and lipids. For this study, we also analyzed these fish for isotopes of nitrogen (N). NCCA collected water quality, nutrients, chlorophyll a, and sediment chemistry at each site. We used these data, along with fish life history and watershed land use, to examine how whole fish δ15N was related to these environmental variables using random forest regression models at national and ecoregional scales. At the national scale, fish δ15N were negatively related to total N:total phosphorous (P) ratios (TN:TP) in surface water and reflected differences between the P-limited, δ15N depleted sites in the Floridian ecoregion to sites in other regions. δ15N was lower on the Atlantic relative to the Pacific coast. When considered by region, TN:TP was an important predictor of fish δ15N in 4 of 9 ecoregions, with higher δ15N observed with increasing N limitation (lower TN:TP) Fish life history was also an important predictor of fish δ15N at both the national and ecoregional scale. Whole fish δ15N was positively associated with bioaccumulative contaminants such as PCBs and mercury. Although land use was related to δ15N in fish, it was location specific. This study showed that N stable isotopes reflected ecological conditions at both regional and continental scales.


Environmental Monitoring , Fishes , Nitrogen Isotopes , Water Pollutants, Chemical , Nitrogen Isotopes/analysis , Animals , Environmental Monitoring/methods , Fishes/metabolism , Water Pollutants, Chemical/analysis , United States , Nitrogen/analysis , Estuaries
3.
Mar Pollut Bull ; 186: 114456, 2023 Jan.
Article En | MEDLINE | ID: mdl-36502776

M-AMBI, a multivariate benthic index, has been used by European and American (U.S.) authorities to assess estuarine and coastal health and has been used in scientific studies throughout the world. It has been shown to be related to multiple pressures and stressors, but the relative importance of individual stressors within a multiple stressor context has not generally been assessed. In this study, we assembled data collected between 1999 and 2015 by the U.S. Environmental Protection Agency using consistent methods. These data included sediment and water quality measures and benthic invertebrate data which were used to calculate M-AMBI. We further assembled watersheds for all US estuaries with benthic data and calculated land use metrics. Random forest (RF) was used to identify those variables most strongly related to M-AMBI. Because RF is a compilation of multiple, nonlinear models, we then assessed which of these variables had a direct relationship with M-AMBI. The resulting variables were then assessed using RF to identify the subsets of variables that produced an effective and parsimonious model. This process was conducted at the national and ecoregional scale and the variables identified as being most important to predict M-AMBI were compared with literature reports of ecological patterns in a given area. At the national scale, better condition was correlated with clearer waters, lower amounts of agriculture in the watershed, and lower carbon and metal concentrations in estuarine sediments. Other stressors were identified as being important at the ecoregional scale, although sediment metal concentrations and watershed agriculture were identified as being important in most ecoregions. Our results suggest that this technique is useful to identify the most important variables impacting M-AMBI at broad spatial scales, even when the percentage of sites in Bad or Poor condition is low. This technique also provides an initial identification of important stressors that can be used to target more intensive local studies.


Ecosystem , Estuaries , Animals , Environmental Monitoring/methods , Invertebrates , Water Quality
4.
Ecol Indic ; 142: 1-12, 2022 Sep 01.
Article En | MEDLINE | ID: mdl-36969322

One of the goals of coastal ecological research is to describe, quantify and predict human effects on coastal ecosystems. Broad cross-systems assessments to classify ecosystem status or condition have been developed, but are not updated frequently, likely because a lot of information and effort is needed to implement them. Such assessments could be more useful if the probability of being in a class indicating status or condition could be predicted using widely available data and information, providing a useful way to interpret changes in underlying predictors by considering their expected impact on ecosystem condition. To illustrate a possible approach, we used chlorophyll-a as an indicator of condition, in place of the intended comprehensive condition assessment. We demonstrated a predictive approach starting with a random forest model to inform variable selection, then used a Bayesian multilevel ordered categorical regression to quantify a coastal trophic state index and predict system status. We initially fit the model using non-informative priors to water quality data (total nitrogen and phosphorus, dissolved inorganic nitrogen and phosphorus, secchi depth) from 2010 and a regional factor. We then updated the model using prior distributions based on posterior parameter distributions from the initial fit and data from 2015. The Bayesian model demonstrates an intuitive way to update a model or analysis with new data while retaining the benefit of prior knowledge and maintaining flexibility to consider new kinds of information. To illustrate how the model could be used, we applied our developed trophic state index and classification to a time series of water quality data from Boston Harbor, a coastal ecosystem that has undergone significant changes in nutrient inputs. The analysis shows how water quality status and trends in Boston Harbor can be understood in the comparative ecological context provided by data from estuaries around the continental US and illustrates how the analytical approach could be used as an interpretive tool by non-practitioners of Bayesian statistics as well as a framework for further model development and analysis.

5.
Mar Environ Res ; 169: 105323, 2021 Jul.
Article En | MEDLINE | ID: mdl-33862568

Narragansett Bay is representative of New England, USA urbanized estuaries, with colonization in the early 17th century, and development into industrial and transportation centers in the late 18th and early 20th century. Increasing nationwide population and lack of infrastructure maintenance led to environmental degradation, and then eventual improvement after implementation of contaminant control and sewage treatment starting in the 1970s. Benthic macroinvertebrate community structure was expected to respond to these environmental changes. This study assembled data sets from the 1950s through 2010s to examine whether quantitative aggregate patterns in the benthic community corresponded qualitatively to stressors and management actions in the watershed. In Greenwich Bay and Providence River, patterns of benthic response corresponded to the decline and then improvement in sewage treatment at the Fields Point wastewater treatment plant. In Mount Hope Bay, the benthos corresponded to changes in bay fish populations due to thermal discharge from the Brayton Point power plant. The benthos of the Upper West Passage corresponded to climatic changes that caused regime shifts in the plankton and fish communities. Future work will examine the effects of further environmental improvements in the face of continued climatic changes and population growth.


Estuaries , Invertebrates , Animals , Environmental Monitoring , New England , Rivers
6.
Aquat Sci ; 82(2): 1-44, 2020 Mar 28.
Article En | MEDLINE | ID: mdl-32489242

Our understanding of how ecosystems function has changed from an equilibria-based view to one that recognizes the dynamic, fluctuating, nonlinear nature of aquatic systems. This current understanding requires that we manage systems for resilience. In this review, we examine how resilience has been defined, measured and applied in aquatic systems, and more broadly, in the socioecological systems in which they are embedded. Our review reveals the importance of managing stressors adversely impacting aquatic system resilience, as well as understanding the environmental and climatic cycles and changes impacting aquatic resources. Aquatic resilience may be enhanced by maintaining and enhancing habitat connectivity as well as functional redundancy and physical and biological diversity. Resilience in aquatic socioecological system may be enhanced by understanding and fostering linkages between the social and ecological subsystems, promoting equity among stakeholders, and understanding how the system is impacted by factors within and outside the area of immediate interest. Management for resilience requires implementation of adaptive and preferably collaborative management. Implementation of adaptive management for resilience will require an effective monitoring framework to detect key changes in the coupled socioecological system. Research is needed to (1) develop sensitive indicators and monitoring designs, (2) disentangle complex multi-scalar interactions and feedbacks, and (3) generalize lessons learned across aquatic ecosystems and apply them in new contexts.

7.
Ecol Indic ; 1112020 Apr.
Article En | MEDLINE | ID: mdl-32461737

Since the 1940s, anthropogenic nitrogen (N) inputs have grown to dominate global N cycles, particularly in fluvial systems. Negative impacts of this enrichment on downstream estuaries are well documented. Efforts at N reductions are increasingly successful but evaluating ecosystem response trajectories is difficult because of a lack of knowledge of historic conditions. To document continental-scale coastal food web N-dynamics prior to large increases in human N-loads, we sampled 208 fish from an archival collection, taken from coastal waters across the continental U.S., with a median collection year of 1904. The archival fish were compared with 526 samples collected in 2015 from 126 estuaries also along the U.S. coastline. We used stable isotopes of N (δ15N) and carbon (δ13C) as a proxy for human inputs and organic matter sources. Watershed attributes from 1910 and 2012, census data, fish life histories, and basic estuarine geography were used to develop random forest models that determined which variables were the best predictors of isotope values. State, latitude, and fish trophic level were consistently the most important predictors, while human impacts played a lesser role. When the fish were collected (~1914 vs 2015) was not an important predictor, rather where the fish was collected was the best predictor of N source. The model results illustrate the important role that geography plays in coastal food web dynamics and underscore the importance of offshore N-sources to coastal food webs.

8.
Environ Monit Assess ; 191(4): 252, 2019 Mar 27.
Article En | MEDLINE | ID: mdl-30919081

Estuaries are dynamic transition zones linking freshwater and oceanic habitats. These productive ecosystems are threatened by a variety of stressors including human modification of coastal watersheds. In this study, we examined potential linkages between estuarine condition and the watershed using multimodel inference. We examined attributes at the watershed scale as well as those associated with riparian areas but found that they were highly correlated. We also examined whether attributes closer to the estuary were more strongly related to benthic invertebrate condition and found that this was not generally true. In contrast, variability within the estuary strongly impacted model results and suggests that future modeling should incorporate estuarine variability or focus on the individual stations within the estuary. Modeling estuarine condition indicated that inherent landscape structure (e.g., estuarine area, watershed area, watershed:estuary ratio) is important to predicting benthic invertebrate condition and needs to be considered in the context of watershed/ estuary planning and restoration.


Aquatic Organisms , Environmental Monitoring , Estuaries , Invertebrates , Animals , Aquatic Organisms/growth & development , Ecosystem , Fresh Water , Housing , Humans , Invertebrates/growth & development , Oceans and Seas , Virginia , Water
9.
Ecol Indic ; 89: 818-827, 2018 Jun 01.
Article En | MEDLINE | ID: mdl-29780283

The multivariate AMBI (M-AMBI) is an extension of the AZTI Marine Biotic Index (AMBI) that has been used extensively in Europe, but not in the United States. In a previous study, we adapted AMBI for use in US coastal waters (US AMBI), but saw biases in salinity and score distribution when compared to locally calibrated indices. In this study we modified M-AMBI for US waters and compared its performance to that of US AMBI. Index performance was evaluated in three ways: 1) concordance with local indices presently being used as management tools in three geographic regions of US coastal waters, 2) classification accuracy for sites defined a priori as good or bad and 3) insensitivity to natural environmental gradients. US M-AMBI was highly correlated with all three local indices and removed the compression in response seen in moderately disturbed sites with US AMBI. US M-AMBI and US AMBI did a similar job correctly classifying sites as good or bad in local validation datasets (83 to 100% accuracy vs. 84 to 95%, respectively). US M-AMBI also removed the salinity bias of US AMBI so that lower salinity sites were not more likely to be incorrectly classified as impaired. The US M-AMBI appears to be an acceptable index for comparing condition across broad-scales such as estuarine and coastal waters surveyed by the US EPA's National Coastal Condition Assessment, and may be applicable to areas of the US coast that do not have a locally derived benthic index.

10.
Environ Toxicol Chem ; 37(2): 362-375, 2018 02.
Article En | MEDLINE | ID: mdl-29072786

The widespread use of copper nanomaterials (CuNMs) as antibacterial and antifouling agents in consumer products increases the risk for metal contamination and adverse effects in aquatic environments. Information gaps exist on the potential toxicity of CuNMs in marine environments. We exposed field-collected marine meio- and macrobenthic communities to sediments spiked with micronized copper azole (MCA) using a novel method that brings intact benthic cores into the laboratory and exposes the organisms via surface application of sediments. Treatments included field and laboratory controls, 3 spiked sediments: low-MCA (51.9 mg/kg sediment), high-MCA (519 mg/kg sediment), and CuSO4 (519 mg/kg sediment). In addition, single-species acute testing was performed with both MCA and CuSO4. Our results indicate that meio- and macrofaunal assemblages exposed to High-MCA and CuSO4 treatments differed significantly from both the laboratory control and the low-MCA treatments. Differences in macrofauna were driven by decreases in 3 Podocopa ostracod species, the bivalve Gemma gemma, and the polychaetes Exogone verugera and Prionospio heterobranchia relative to the laboratory control. Differences in the meiofaunal community are largely driven by nematodes. The benthic community test results were more sensitive than the single-species test results. Findings of this investigation indicate that CuNMs represent a source of risk to marine benthic communities comparable to that of dissolved Cu. Environ Toxicol Chem 2018;37:362-375. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Azoles/toxicity , Bivalvia/drug effects , Copper/toxicity , Ecosystem , Nanoparticles/toxicity , Polychaeta/drug effects , Animals , Geologic Sediments/chemistry , Photoelectron Spectroscopy , Species Specificity , Spectroscopy, Fourier Transform Infrared , X-Ray Absorption Spectroscopy
11.
Environ Toxicol Chem ; 36(2): 449-462, 2017 02.
Article En | MEDLINE | ID: mdl-27442751

Greenwich Bay is an urbanized embayment of Narragansett Bay potentially impacted by multiple stressors. The present study identified the important stressors affecting Greenwich Bay benthic fauna. First, existing data and information were used to confirm that the waterbody was impaired. Second, the presence of source, stressor, and effect were established. Then linkages between source, stressor, and effect were developed. This allows identification of probable stressors adversely affecting the waterbody. Three pollutant categories were assessed: chemicals, nutrients, and suspended sediments. This weight of evidence approach indicated that Greenwich Bay was primarily impacted by eutrophication-related stressors. The sediments of Greenwich Bay were carbon enriched and low dissolved oxygen concentrations were commonly seen, especially in the western portions of Greenwich Bay. The benthic community was depauperate, as would be expected under oxygen stress. Although our analysis indicated that contaminant loads in Greenwich Bay were at concentrations where adverse effects might be expected, no toxicity was observed, as a result of high levels of organic carbon in these sediments reducing contaminant bioavailability. Our analysis also indicated that suspended sediment impacts were likely nonexistent for much of the Bay. This analysis demonstrates that the diagnostic procedure was useful to organize and assess the potential stressors impacting the ecological well-being of Greenwich Bay. This diagnostic procedure is useful for management of waterbodies impacted by multiple stressors. Environ Toxicol Chem 2017;36:449-462. © 2016 SETAC.


Bays/chemistry , Environmental Monitoring/methods , Geologic Sediments/chemistry , Invertebrates/drug effects , Water Pollutants, Chemical/toxicity , Animals , Eutrophication , Geologic Sediments/analysis , Rhode Island , Urbanization , Water Pollutants, Chemical/analysis
12.
J Environ Qual ; 45(3): 1021-8, 2016 May.
Article En | MEDLINE | ID: mdl-27136170

Water resource managers seeking to optimize stream ecosystem services and abstractions of water from watersheds need an understanding of the importance of land use, physical and climatic characteristics, and hydrography on different low flow components of stream hydrographs. Within 33 USGS gaged watersheds of southern New England, we assessed relationships between watershed variables and a set of low flow parameters by using an information-theoretical approach. The key variables identified by the Akaike Information Criteria (AIC) weighting factors as generating positive relationships with low flow events included percent stratified drift, mean elevation, drainage area, and mean August precipitation. The extent of wetlands in the watershed was negatively related to low flow magnitudes. Of the various land use variables, the percentage of developed land was found to have the highest importance and a negative relationship on low flow magnitudes, but was less important than wetlands and physical and climatic features. Our results suggest that management practices aimed to sustain low flows in fluvial systems can benefit from attention to specific watershed features. We draw attention to the finding that streams located in watersheds with high proportions of wetlands may require more stringent approaches to withdrawals to sustain fluvial ecosystems during drought periods, particularly in watersheds with extensive development and limited deposits of stratified drift.


Ecosystem , Wetlands , Environmental Monitoring , New England , Rivers , Water Movements
13.
Environ Manage ; 55(1): 143-58, 2015 Jan.
Article En | MEDLINE | ID: mdl-25387456

Coastal ecosystems are affected by ever-increasing natural and human pressures. Because the physical, chemical, and biological characteristics unique to estuarine ecosystems control the ways that biological resources respond to ecosystem stressors, we present a flexible and adaptable biological assessment method for estuaries. The biological condition gradient (BCG) is a scientific framework of biological response to increasing anthropogenic stress that is comprehensive and ecosystem based and evaluates environmental conditions and the status of ecosystem services in order to identify, communicate, and prioritize management action. Using existing data, we constructed the first estuarine BCG framework that examines changes in habitat structure through time. Working in a New England (U.S.) estuary with a long history of human influence, we developed an approach to define a reference level, which we described as a "minimally disturbed" range of conditions for the ecosystem, anchored by observations before 1850 AD. Like many estuaries in the U.S., the relative importance of environmental stressors changed over time, but even qualitative descriptions of the biological indicators' status provided useful information for defining condition levels. This BCG demonstrated that stressors rarely acted alone and that declines in one biological indicator influenced the declines of others. By documenting the biological responses to cumulative stressors, the BCG inherently suggests an ecosystem-based approach to management. Additionally, the BCG process initiates thinking over long time scales and can be used to inspire scientists, managers, and the public toward environmental action.


Ecosystem , Environmental Monitoring/history , Estuaries/history , Environmental Monitoring/methods , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Human Activities , Humans , Models, Biological , United States
14.
Environ Toxicol Chem ; 33(2): 359-69, 2014 Feb.
Article En | MEDLINE | ID: mdl-24399368

Ecotoxicological information for most contaminants is limited to a small number of taxa, and these are generally restricted to comparatively hardy organisms that are readily extractable from test media and easily identifiable. Advances in DNA sequencing can now provide a comprehensive view of benthic invertebrate diversity. The authors applied 454 pyrosequencing to examine the responses of benthic communities in microcosms exposed to sediments with elevated concentrations of triclosan, the endpoint being eukaryl communities that have successfully vertically migrated through the manipulated sediments. The biological communities associated with the 3 treatments (control triclosan, low triclosan [14 mg/kg], and high triclosan [180 mg/kg]) clustered into 3 groups: control/low (n = 6 controls and 4 low), moderate (n = 2 low), and high (n = 5 high). One sample was discarded as an outlier. The most pronounced change as a response to triclosan was the loss of number of metazoan operational taxonomic units (OTUs), indicative of the control/low and moderate groups, with this being most evident in the range of taxa associated with the classes Chromadorea and Bivalvia and the phylum Kinorhyncha. The authors also describe a range of other taxa that aided discrimination between the groups; compare findings with traditionally obtained meio- and macrofaunal communities obtained from the same experiment; and illustrate some of the advantages and limitations associated with both the molecular and traditional approaches. The described approach illustrates the capacity for amplicon sequencing to provide ecologically relevant information that can be used to strengthen an understanding of how sedimentary communities respond to a range of environmental stressors.


Anti-Infective Agents, Local/toxicity , Eukaryota/drug effects , Triclosan/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biodiversity , DNA, Ribosomal/analysis , Estuaries , Eukaryota/classification , Eukaryota/genetics , Geologic Sediments , Sequence Analysis, DNA
15.
Environ Sci Technol ; 47(3): 1306-12, 2013 Feb 05.
Article En | MEDLINE | ID: mdl-23305514

Aquatic organisms are exposed to many toxic chemicals and interpreting the cause and effect relationships between occurrence and impairment is difficult. Toxicity Identification Evaluation (TIE) provides a systematic approach for identifying responsible toxicants. TIE relies on relatively uninformative and potentially insensitive toxicological end points. Gene expression analysis may provide needed sensitivity and specificity aiding in the identification of primary toxicants. The current work aims to determine the added benefit of integrating gene expression end points into the TIE process. A cDNA library and a custom microarray were constructed for the marine amphipod Ampelisca abdita. Phase 1 TIEs were conducted using 10% and 40% dilutions of acutely toxic sediment. Gene expression was monitored in survivors and controls. An expression-based classifier was developed and evaluated against control organisms, organisms exposed to low or medium toxicity diluted sediment, and chemically selective manipulations of highly toxic sediment. The expression-based classifier correctly identified organisms exposed to toxic sediment even when little mortality was observed, suggesting enhanced sensitivity of the TIE process. The ability of the expression-based end point to correctly identify toxic sediment was lost concomitantly with acute toxicity when organic contaminants were removed. Taken together, this suggests that gene expression enhances the performance of the TIE process.


Amphipoda/genetics , Aquatic Organisms/genetics , Endpoint Determination , Genome/genetics , Toxicity Tests , Water Pollutants, Chemical/toxicity , Amphipoda/drug effects , Animals , Aquatic Organisms/drug effects , Biomarkers/metabolism , Gene Expression Regulation/drug effects , Geologic Sediments/chemistry , Rhode Island , Rivers/chemistry
16.
Environ Toxicol Chem ; 32(2): 384-92, 2013 Feb.
Article En | MEDLINE | ID: mdl-23161706

Triclosan (5-chloro-2-[2,4-dichlorophenoxy]phenol) is a relatively new, commonly used antimicrobial compound found in many personal care products. Triclosan is toxic to marine organisms at the micrograms per liter level, can photodegrade to a dioxin, can accumulate in humans, and has been found to be stable in marine sediments for over 30 years. To determine the effects of triclosan on marine benthic communities, intact sediment cores were brought into the laboratory and held under flowing seawater conditions. A 2-cm layer of triclosan-spiked sediment was applied to the surface, and after a two-week exposure the meio- and macrofaunal communities were assessed for differences in composition relative to nonspiked cores. A high triclosan treatment (180 mg/kg dry wt) affected both the meio- and the macrobenthic communities. There were no discernible differences with a low-triclosan treatment (14 mg/kg dry wt). This exposure method is effective for testing the benthic community response to sediment contaminants, but improvements should be made with regard to the amount and method of applying the overlying sediment to prevent smothering of fragile benthic organisms.


Anti-Infective Agents/toxicity , Geologic Sediments/chemistry , Invertebrates/physiology , Triclosan/toxicity , Water Pollutants, Chemical/toxicity , Animals , Anti-Infective Agents/analysis , Aquatic Organisms/physiology , Dose-Response Relationship, Drug , Environmental Monitoring/methods , Seawater/chemistry , Triclosan/analysis , Water Pollutants, Chemical/analysis
17.
Environ Toxicol Chem ; 31(8): 1861-6, 2012 Aug.
Article En | MEDLINE | ID: mdl-22605471

Triclosan is an antimicrobial compound that has been widely used in consumer products such as toothpaste, deodorant, and shampoo. Because of its widespread use, triclosan has been detected in various environmental media, including wastewater, sewage sludge, surface waters, and sediments. Triclosan is acutely toxic to numerous aquatic organisms, but very few studies have been performed on estuarine and marine benthic organisms. For whole sediment toxicity tests, the sediment-dwelling estuarine amphipod, Ampelisca abdita, and the epibenthic mysid shrimp, Americamysis bahia, are commonly used organisms. In the present study, median lethal concentration values (LC50) were obtained for both of these organisms using water-only and whole sediment exposures. Acute 96-h water-only toxicity tests resulted in LC50 values of 73.4 and 74.3 µg/L for the amphipod and mysid, respectively. For the 7-d whole sediment toxicity test, LC50 values were 303 and 257 mg/kg (dry wt) for the amphipod and mysid, respectively. Using equilibrium partitioning theory, these whole sediment values are equivalent to interstitial water LC50 values of 230 and 190 µg/L for the amphipod and mysid, respectively, which are within a threefold difference of the observed 96-h LC50 water-only values. Triclosan was found to accumulate in polychaete tissue in a 28-d bioaccumulation study with a biota-sediment accumulation factor of 0.23 kg organic carbon/kg lipid. These data provide some of the first toxicity data for triclosan with marine benthic and epibenthic species while also indicating a need to better understand the effects of other forms of sediment carbon, triclosan ionization, and organism metabolism of triclosan on the chemical's behavior and toxicity in the aquatic environment.


Anti-Infective Agents, Local/toxicity , Crustacea/drug effects , Triclosan/toxicity , Water Pollutants, Chemical/toxicity , Animals , Anti-Infective Agents, Local/analysis , Environmental Monitoring/methods , Geologic Sediments/analysis , Lethal Dose 50 , Toxicity Tests, Chronic , Triclosan/analysis , Water Pollutants, Chemical/analysis
18.
Integr Environ Assess Manag ; 8(4): 685-702, 2012 Oct.
Article En | MEDLINE | ID: mdl-22447411

Diagnosing the causes of impaired ecosystems in the marine environment is critical for effective management action. When ecological impairment is based on toxicological or biological criteria (i.e., degraded benthic community composition or toxicity test results), managers are faced with the additional problem of diagnosing the cause of impairment before plans can be initiated to reduce the pollutant loading. We evaluated a number of diagnostic tools to determine their ability to identify pollutants in New Bedford Harbor (NBH), Massachusetts (USA), using a modified version of the US Environmental Protection Agency's (USEPA) stressor identification (SI) guidance. In this study, we linked chemical sources and toxic chemicals in the sediment with spatial concentration studies; we also linked toxic chemicals in the sediment with toxicity test results using toxicity identification and evaluation (TIE) studies. We used geographical information systems (GIS) maps to determine sources and to aid in determining spatially integrated inorganic nitrogen (SIIN). The SIIN values of reference and test estuaries were quantified and compared. Using this approach, we determined that toxic chemicals continue to be active stressors in NBH and that a moderate nutrient stress exists, but we were unable to link the nutrient stressor with a source. Also excess sedimentation was evaluated, but it does not appear to be an active stressor in this harbor. The research included an evaluation of the effectiveness of tools under development that may be used to evaluate stressors in water bodies. We found that the following tools were useful in diagnosing active stressors: toxicity tests, toxicity identification and evaluation (TIE) methods, comparison of grain size-normalized total organic carbon (TOC) ratios with reference sites, and comparison of SIIN with reference sites. This approach allowed us to successfully evaluate stressors in NBH retrospectively; however, a limitation in using retrospective data sets is that the approach may underestimate current or newly emerging stressors.


Environmental Monitoring/methods , Invertebrates/drug effects , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/drug effects , Aquatic Organisms/metabolism , Decision Support Techniques , Estuaries , Geologic Sediments , Invertebrates/metabolism , Massachusetts , Retrospective Studies
19.
Environ Toxicol Chem ; 30(3): 538-47, 2011 Mar.
Article En | MEDLINE | ID: mdl-21298700

Eutrophication (i.e., nutrient enrichment, organic enrichment, and oxygen depletion) is one of the most common sources of impairment in Clean Water Act 303(d)-listed waters in the United States. Although eutrophication can eventually cause adverse effects to the benthos, it may be difficult to diagnose. Sediment organic carbon (OC) content has been used as an indicator of enrichment in sediments, but the amount of surface area available for carbon adsorption must be considered. We investigated the utility of the relationship between OC and sediment grain size as an indicator of eutrophication. Data from the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program was used to test this relationship. However, anthropogenic contaminants are also capable of causing adverse effects to the benthos and often co-occur with elevated levels of OC. Contaminant analysis and toxicity tests were not consistently related to enrichment status as defined by relationship between total OC and grain size. Although variability in response occurred, reflecting the variance in the water column factors (dissolved oxygen, chlorophyll a, and nutrients) and limited sample sizes, the data supported the hypothesis that sites designated as enriched were eutrophied. Dissolved oxygen levels were reduced at enriched sites, whereas chlorophyll a and nutrients were higher at enriched sites. This suggests that the relationship of OC to grain size can be used as a screening tool to diagnose eutrophication.


Carbon/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Chlorophyll/analysis , Chlorophyll A , Eutrophication , Nitrogen/analysis , Particle Size , Phosphorus/analysis , Water Pollution, Chemical/statistics & numerical data
20.
Chemosphere ; 83(3): 247-54, 2011 Apr.
Article En | MEDLINE | ID: mdl-21239040

Passive samplers are used to measure dissolved nonionic organic contaminants (NOCs) in environmental media. More recently, reverse polyethylene samplers (RePES) have been used with spiked sediments to recreate interstitial water exposure concentrations and observed toxicity. In the present study, RePES were used with field contaminated sediments. The RePES was not capable of recreating the pattern of toxicity with the amphipod and mysid observed with intact field sediments. Decreased survival in the RePES exposures as compared to the whole sediment exposures was most likely caused by an overexposure to NOCs due to a lack of surrogate black carbon in the RePES system. As an alternative, aqueous phase studies were performed in which polyethylene was allowed to equilibrate with slurries of intact sediments for 3 weeks. Three weeks was found to be an insufficient amount of time for the polyethylene to equilibrate with the sediment. An additional study demonstrated 3 months was sufficient for lower contaminant concentrations, but might not be an adequate amount of time for more highly contaminated sediments. The aqueous phase transfer approach may be useful if equilibration is sufficiently long, although this length of time may be impractical for use in certain applications, such as toxicity identification evaluations (TIEs).


Environmental Monitoring/instrumentation , Geologic Sediments/chemistry , Organic Chemicals/chemistry , Polyethylene/chemistry , Water Pollutants, Chemical/chemistry , Amphipoda/drug effects , Animals , Environmental Monitoring/methods , Organic Chemicals/toxicity , Soot/chemistry , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity
...