Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Article En | MEDLINE | ID: mdl-38819348

BACKGROUND: A partial delineation of targets for ablation of ventricular tachycardia (VT) during a stable rhythm is likely responsible for a suboptimal success rate. The abnormal low-voltage near-field functional components may be hidden within the high-amplitude far-field signal. OBJECTIVES: The aim of this study was to evaluate the benefit and feasibility of functional substrate mapping using a full-ventricle S3 protocol and to assess its colocalization with arrhythmogenic conducting channels (CCs) on late gadolinium enhancement cardiac magnetic resonance. METHODS: An S3 mapping protocol with a drive train of S1 followed by S2 (effective refractory period + 30 ms) and S3 (effective refractory period + 50 ms) from the right ventricular apex was performed in 40 consecutive patients undergoing scar-related VT ablation. Deceleration zones (DZs) and areas of late potentials (LPs) were identified for all maps. A preprocedural noninvasive substrate assessment was done using late gadolinium enhancement cardiac magnetic resonance and postprocessing with automated CC identification. RESULTS: The S3 protocol was completed in 34 of the 40 procedures (85.0%). The S3 protocol enhanced the identification of VT isthmus on the basis of DZ (89% vs 62%; P < 0.01) and LP (93% vs 78%; P = 0.04) assessment. The percentage of CCs unmasked by DZs and LPs using S3 maps was significantly higher than the ones using S2 and S1 maps (78%, 65%, and 48% [P < 0.001] and 88%, 81%, and 68% [P < 0.01], respectively). The functional substrate identified during S3 activation mapping was significantly more extensive than the one identified using S2 and S1, including a greater number of DZs (2.94, 2.47, and 1.82, respectively; P < 0.001) and a wider area of LPs (44.1, 38.2, and 29.4 cm2, respectively; P < 0.001). After VT ablation, 77.9% of patients have been VT free during a median follow-up period of 13.6 months. CONCLUSIONS: The S3 protocol was feasible in 85% of patients, allows a better identification of targets for ablation, and might improve VT ablation results.

2.
Heart Rhythm ; 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38636930

BACKGROUND: Atrial arrhythmogenic substrate is a key determinant of atrial fibrillation (AF) recurrence after pulmonary vein isolation (PVI), and reduced conduction velocities have been linked to adverse outcome. However, a noninvasive method to assess such electrophysiologic substrate is not available to date. OBJECTIVE: This study aimed to noninvasively assess regional conduction velocities and their association with arrhythmia-free survival after PVI. METHODS: A consecutive 52 patients scheduled for AF ablation (PVI only) and 19 healthy controls were prospectively included and received electrocardiographic imaging (ECGi) to noninvasively determine regional atrial conduction velocities in sinus rhythm. A novel ECGi technology obviating the need of additional computed tomography or cardiac magnetic resonance imaging was applied and validated by invasive mapping. RESULTS: Mean ECGi-determined atrial conduction velocities were significantly lower in AF patients than in healthy controls (1.45 ± 0.15 m/s vs 1.64 ± 0.15 m/s; P < .0001). Differences were particularly pronounced in a regional analysis considering only the segment with the lowest average conduction velocity in each patient (0.8 ± 0.22 m/s vs 1.08 ± 0.26 m/s; P < .0001). This average conduction velocity of the "slowest" segment was independently associated with arrhythmia recurrence and better discriminated between PVI responders and nonresponders than previously proposed predictors, including left atrial size and late gadolinium enhancement (magnetic resonance imaging). Patients without slow-conduction areas (mean conduction velocity <0.78 m/s) showed significantly higher 12-month arrhythmia-free survival than those with 1 or more slow-conduction areas (88.9% vs 48.0%; P = .002). CONCLUSION: This is the first study to investigate regional atrial conduction velocities noninvasively. The absence of ECGi-determined slow-conduction areas well discriminates PVI responders from nonresponders. Such noninvasive assessment of electrical arrhythmogenic substrate may guide treatment strategies and be a step toward personalized AF therapy.

...