Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37765003

RESUMEN

Alzheimer's disease (AD) is considered a complex neurodegenerative condition which warrants the development of multitargeted drugs to tackle the key pathogenetic mechanisms of the disease. In this study, two novel series of melatonin- and donepezil-based hybrid molecules with hydrazone (3a-r) or sulfonyl hydrazone (5a-l) fragments were designed, synthesized, and evaluated as multifunctional ligands against AD-related neurodegenerative mechanisms. Two lead compounds (3c and 3d) exhibited a well-balanced multifunctional profile, demonstrating intriguing acetylcholinesterase (AChE) inhibition, promising antioxidant activity assessed by DPPH, ABTS, and FRAP methods, as well as the inhibition of lipid peroxidation in the linoleic acid system. Compound 3n, possessing two indole scaffolds, showed the highest activity against butyrylcholinesterase (BChE) and a high selectivity index (SI = 47.34), as well as a pronounced protective effect in H2O2-induced oxidative stress in SH-SY5Y cells. Moreover, compounds 3c, 3d, and 3n showed low neurotoxicity against malignant neuroblastoma cell lines of human (SH-SY5Y) and murine (Neuro-2a) origin, as well as normal murine fibroblast cells (CCL-1) that indicate the in vitro biocompatibility of the experimental compounds. Furthermore, compounds 3c, 3d, and 3n were capable of penetrating the blood-brain barrier (BBB) in the experimental PAMPA-BBB study. The molecular docking showed that compound 3c could act as a ligand to both MT1 and MT2 receptors, as well as to AchE and BchE enzymes. Taken together, those results outline compounds 3c, 3d, and 3n as promising prototypes in the search of innovative compounds for the treatment of AD-associated neurodegeneration with oxidative stress. This study demonstrates that hydrazone derivatives with melatonin and donepezil are appropriate for further development of new AChE/BChE inhibitory agents.

2.
Biomolecules ; 13(8)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37627241

RESUMEN

Tuberculosis (TB) remains a widespread infectious disease and one of the top 10 causes of death worldwide. Nevertheless, despite significant advances in the development of new drugs against tuberculosis, many therapies and preventive measures do not lead to the expected favorable health results for various reasons. The aim of this study was to evaluate the acute and sub-acute toxicity and oxidative stress of two selected nitrofuranyl amides with high in vitro antimycobacterial activity. In addition, molecular docking studies were performed on both compounds to elucidate the possibilities for further development of new anti-tuberculosis candidates with improved efficacy, selectivity, and pharmacological parameters. Acute toxicity tests showed that no changes were observed in the skin, coat, eyes, mucous membranes, secretions, and vegetative activity in mice. The histological findings include features consistent with normal histological architecture without being associated with concomitant pathological conditions. The observed oxidative stress markers indicated that the studied compounds disturbed the oxidative balance in the mouse liver. Based on the molecular docking, compound DO-190 showed preferable binding energies compared to DO-209 in three out of four targets, while both compounds showed promising protein-ligand interactions. Thus, both studied compounds displayed promising activity with low toxicity and can be considered for further evaluation and/or lead optimization.


Asunto(s)
Amidas , Antituberculosos , Animales , Ratones , Antituberculosos/toxicidad , Simulación del Acoplamiento Molecular , Amidas/farmacología , Ojo , Estrés Oxidativo
3.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362434

RESUMEN

The conventional treatment of neurodegenerative diseases (NDDs) is based on the "one molecule-one target" paradigm. To combat the multifactorial nature of NDDs, the focus is now shifted toward the development of small-molecule-based compounds that can modulate more than one protein target, known as "multi-target-directed ligands" (MTDLs), while having low affinity for proteins that are irrelevant for the therapy. The in silico approaches have demonstrated a potential to be a suitable tool for the identification of MTDLs as promising drug candidates with reduction in cost and time for research and development. In this study more than 650,000 compounds were screened by a series of in silico approaches to identify drug-like compounds with predicted activity simultaneously towards three important proteins in the NDDs symptomatic treatment: acetylcholinesterase (AChE), histone deacetylase 2 (HDAC2), and monoamine oxidase B (MAO-B). The compounds with affinities below 5.0 µM for all studied targets were additionally filtered to remove known non-specifically binding or unstable compounds. The selected four hits underwent subsequent refinement through in silico blood-brain barrier penetration estimation, safety evaluation, and molecular dynamics simulations resulting in two hit compounds that constitute a rational basis for further development of multi-target active compounds against NDDs.


Asunto(s)
Acetilcolinesterasa , Enfermedades Neurodegenerativas , Humanos , Acetilcolinesterasa/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Ligandos , Monoaminooxidasa/metabolismo , Desarrollo de Medicamentos , Simulación del Acoplamiento Molecular , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Inhibidores de la Colinesterasa/química , Relación Estructura-Actividad
4.
Molecules ; 27(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35630751

RESUMEN

The increased use of polyphenols nowadays poses the need for identification of their new pharmacological targets. Recently, structure similarity-based virtual screening of DrugBank outlined pseudopurpurin, a hydroxyanthraquinone from Rubia cordifolia spp., as similar to gatifloxacin, a synthetic antibacterial agent. This suggested the bacterial DNA gyrase and DNA topoisomerase IV as potential pharmacological targets of pseudopurpurin. In this study, estimation of structural similarity to referent antibacterial agents and molecular docking in the DNA gyrase and DNA topoisomerase IV complexes were performed for a homologous series of four hydroxyanthraquinones. Estimation of shape- and chemical feature-based similarity with (S)-gatifloxacin, a DNA gyrase inhibitor, and (S)-levofloxacin, a DNA topoisomerase IV inhibitor, outlined pseudopurpurin and munjistin as the most similar structures. The docking simulations supported the hypothesis for a plausible antibacterial activity of hydroxyanthraquinones. The predicted docking poses were grouped into 13 binding modes based on spatial similarities in the active site. The simultaneous presence of 1-OH and 3-COOH substituents in the anthraquinone scaffold were emphasized as relevant features for the binding modes' variability and ability of the compounds to strongly bind in the DNA-enzyme complexes. The results reveal new potential pharmacological targets of the studied polyphenols and help in their prioritization as drug candidates and dietary supplements.


Asunto(s)
Topoisomerasa de ADN IV , Rubia , Antibacterianos/química , Antibacterianos/farmacología , Girasa de ADN/química , Gatifloxacina , Simulación del Acoplamiento Molecular , Polifenoles
5.
Antibiotics (Basel) ; 11(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35625207

RESUMEN

Fifteen 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives 3a-d and sulfonyl hydrazones 5a-k were synthesized. They were characterized by 1H-NMR, 13C NMR, and HRMS. Mycobacterium tuberculosis strain H37Rv was used to assess their antimycobacterial activity. All compounds demonstrated significant minimum inhibitory concentrations (MIC) from 0.07 to 0.32 µM, comparable to those of isoniazid. The cytotoxicity was evaluated using the standard MTT-dye reduction test against human embryonic kidney cells HEK-293T and mouse fibroblast cell line CCL-1. 4-Hydroxy-3-methoxyphenyl substituted 1,2,3-thiadiazole-based hydrazone derivative 3d demonstrated the highest antimycobacterial activity (MIC = 0.0730 µM) and minimal associated cytotoxicity against two normal cell lines (selectivity index SI = 3516, HEK-293, and SI = 2979, CCL-1). The next in order were sulfonyl hydrazones 5g and 5k with MIC 0.0763 and 0.0716 µM, respectively, which demonstrated comparable minimal cytotoxicity. All compounds were subjected to ADME/Tox computational predictions, which showed that all compounds corresponded to Lipinski's Ro5, and none were at risk of toxicity. The suitable scores of molecular docking performed on two crystallographic structures of enoyl-ACP reductase (InhA) provide promising insight into possible interaction with the InhA receptor. The 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives and sulfonyl hydrazones proved to be new classes of lead compounds having the potential of novel candidate antituberculosis drugs.

6.
Front Pharmacol ; 13: 831791, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321325

RESUMEN

Sdox is a hydrogen sulfide (H2S)-releasing doxorubicin effective in P-glycoprotein-overexpressing/doxorubicin-resistant tumor models and not cytotoxic, as the parental drug, in H9c2 cardiomyocytes. The aim of this study was the assessment of Sdox drug-like features and its absorption, distribution, metabolism, and excretion (ADME)/toxicity properties, by a multi- and transdisciplinary in silico, in vitro, and in vivo approach. Doxorubicin was used as the reference compound. The in silico profiling suggested that Sdox possesses higher lipophilicity and lower solubility compared to doxorubicin, and the off-targets prediction revealed relevant differences between Dox and Sdox towards several cancer targets, suggesting different toxicological profiles. In vitro data showed that Sdox is a substrate with lower affinity for P-glycoprotein, less hepatotoxic, and causes less oxidative damage than doxorubicin. Both anthracyclines inhibited CYP3A4, but not hERG currents. Unlike doxorubicin, the percentage of zebrafish live embryos at 72 hpf was not affected by Sdox treatment. In conclusion, these findings demonstrate that Sdox displays a more favorable drug-like ADME/toxicity profile than doxorubicin, different selectivity towards cancer targets, along with a greater preclinical efficacy in resistant tumors. Therefore, Sdox represents a prototype of innovative anthracyclines, worthy of further investigations in clinical settings.

7.
Front Netw Physiol ; 2: 873337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36926110

RESUMEN

The Foreign Object Principle has been introduced in a formalized form for first time. Proven as a suitable tool for modelling of parallel processes flowing in real time, the generalized nets have been used for an interpretation of the Foreign Object Principle. It is illustrated by some examples from network physiology.

8.
Molecules ; 26(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34770768

RESUMEN

The aim of this study was to investigate the chemical space and interactions of natural compounds with sulfotransferases (SULTs) using ligand- and structure-based in silico methods. An in-house library of natural ligands (hormones, neurotransmitters, plant-derived compounds and their metabolites) reported to interact with SULTs was created. Their chemical structures and properties were compared to those of compounds of non-natural (synthetic) origin, known to interact with SULTs. The natural ligands interacting with SULTs were further compared to other natural products for which interactions with SULTs were not known. Various descriptors of the molecular structures were calculated and analyzed. Statistical methods (ANOVA, PCA, and clustering) were used to explore the chemical space of the studied compounds. Similarity search between the compounds in the different groups was performed with the ROCS software. The interactions with SULTs were additionally analyzed by docking into different experimental and modeled conformations of SULT1A1. Natural products with potentially strong interactions with SULTs were outlined. Our results contribute to a better understanding of chemical space and interactions of natural compounds with SULT enzymes and help to outline new potential ligands of these enzymes.


Asunto(s)
Productos Biológicos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Sulfotransferasas/química , Productos Biológicos/farmacología , Análisis por Conglomerados , Flavonoides , Ligandos , Estructura Molecular , Polifenoles , Relación Estructura-Actividad , Sulfotransferasas/metabolismo
9.
Toxics ; 9(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919268

RESUMEN

The cytotoxicity and microbicidal capacity of seven organic solvents commonly applied for studying plant extracts and bioactive compounds were systematically investigated based on international standards. Four cell lines of normal (CCL-1, HaCaT) or tumor (A-375, A-431) tissue origin, seven bacterial and one fungal strain were used. The impact of the least toxic solvents in the determination of in vitro cytotoxicity was evaluated using a standardized extract from Vaccinium macrocarpon containing 54.2% v/v proanthocyanidins (CystiCran®). The solvents ethanol, methoxyethanol and polyethylene glycol were the least cytotoxic to all cell lines, with a maximum tolerated concentration (MTC) between 1 and 2% v/v. Ethanol, methanol and polyethylene glycol were mostly suitable for antimicrobial susceptibility testing, with minimum inhibitory concentrations (MICs) ≥ 25% v/v. The MTC values of the solvents dimethyl sulfoxide, dimethoxyethane and dimethylformamide varied from 0.03% to 1.09% v/v. The MICs of dimethyl sulfoxide, methoxyethanol and dimethoxyethane were in the range of 3.125-25% v/v. The cytotoxic effects of CystiCran® on eukaryotic cell lines were directly proportional to the superimposed effect of the solvents used. The results of this study can be useful for selecting the appropriate solvents for in vitro estimation of the cytotoxic and growth inhibitory effects of bioactive molecules in eukaryotic and prokaryotic cells.

10.
Antioxidants (Basel) ; 9(5)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380762

RESUMEN

Silymarin is the standardized extract from the fruits of Silybum marianum (L.) Gaertn., a well-known hepatoprotectant and antioxidant. Recently, bioactive compounds of silymarin, i.e., silybins and their 2,3-dehydro derivatives, have been shown to exert anticancer activities, yet with unclear mechanisms. This study combines in silico and in vitro methods to reveal the potential interactions of optically pure silybins and dehydrosilybins with novel protein targets. The shape and chemical similarity with approved drugs were evaluated in silico, and the potential for interaction with the Hedgehog pathway receptor Smoothened (SMO) and BRAF kinase was confirmed by molecular docking. In vitro studies on SMO and BRAF V600E kinase activity and in BRAF V600E A-375 human melanoma cell lines were further performed to examine their effects on these proteins and cancer cell lines and to corroborate computational predictions. Our in silico results direct to new potential targets of silymarin constituents as dual inhibitors of BRAF and SMO, two major targets in anticancer therapy. The experimental studies confirm that BRAF kinase and SMO may be involved in mechanisms of anticancer activities, demonstrating dose-dependent profiles, with dehydrosilybins showing stronger effects than silybins. The results of this work outline the dual SMO/BRAF effect of flavonolignans from Silybum marianum with potential clinical significance. Our approach can be applied to other natural products to reveal their potential targets and mechanism of action.

11.
Int J Mol Sci ; 20(18)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546814

RESUMEN

Chemical biology and drug discovery are complex and costly processes. In silico screening approaches play a key role in the identification and optimization of original bioactive molecules and increase the performance of modern chemical biology and drug discovery endeavors. Here, we describe a free web-based protocol dedicated to small-molecule virtual screening that includes three major steps: ADME-Tox filtering (via the web service FAF-Drugs4), docking-based virtual screening (via the web service MTiOpenScreen), and molecular mechanics optimization (via the web service AMMOS2 [Automatic Molecular Mechanics Optimization for in silico Screening]). The online tools FAF-Drugs4, MTiOpenScreen, and AMMOS2 are implemented in the freely accessible RPBS (Ressource Parisienne en Bioinformatique Structurale) platform. The proposed protocol allows users to screen thousands of small molecules and to download the top 1500 docked molecules that can be further processed online. Users can then decide to purchase a small list of compounds for in vitro validation. To demonstrate the potential of this online-based protocol, we performed virtual screening experiments of 4574 approved drugs against three cancer targets. The results were analyzed in the light of published drugs that have already been repositioned on these targets. We show that our protocol is able to identify active drugs within the top-ranked compounds. The web-based protocol is user-friendly and can successfully guide the identification of new promising molecules for chemical biology and drug discovery purposes.


Asunto(s)
Bases de Datos de Compuestos Químicos , Internet , Simulación del Acoplamiento Molecular , Programas Informáticos , Animales , Humanos
12.
Phytomedicine ; 53: 79-85, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30668415

RESUMEN

BACKGROUND: In recent years the number of natural products used as pharmaceuticals, components of dietary supplements and cosmetics has increased tremendously requiring more extensive evaluation of their pharmacokinetic properties. PURPOSE: This study aims at combining in vitro and in silico methods to evaluate the gastrointestinal absorption (GIA) of natural flavonolignans from milk thistle (Silybum marianum (L.) Gaertn.) and their derivatives. METHODS: A parallel artificial membrane permeability assay (PAMPA) was used to evaluate the transcellular permeability of the plant main components. A dataset of 269 compounds with measured PAMPA values and specialized software tools for calculating molecular descriptors were utilized to develop a quantitative structure-activity relationship (QSAR) model to predict PAMPA permeability. RESULTS: The PAMPA permeabilities of 7 compounds constituting the main components of the milk thistle were measured and their GIA was evaluated. A freely-available and easy to use QSAR model predicting PAMPA permeability from calculated physico-chemical molecular descriptors was derived and validated on an external dataset of 783 compounds with known GIA. The predicted permeability values correlated well with obtained in vitro results. The QSAR model was further applied to predict the GIA of 31 experimentally untested flavonolignans. CONCLUSIONS: According to both in vitro and in silico results most flavonolignans are highly permeable in the gastrointestinal tract, which is a prerequisite for sufficient bioavailability and use as lead structures in drug development. The combined in vitro/in silico approach can be used for the preliminary evaluation of GIA and to guide further laboratory experiments on pharmacokinetic characterization of bioactive compounds, including natural products.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Flavonoides/química , Flavonoides/farmacocinética , Relación Estructura-Actividad Cuantitativa , Silybum marianum/química , Simulación por Computador , Suplementos Dietéticos , Flavonolignanos/farmacocinética , Humanos , Absorción Intestinal/efectos de los fármacos , Membranas Artificiales
13.
Nucleic Acids Res ; 45(W1): W350-W355, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28486703

RESUMEN

AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Proteínas/química , Programas Informáticos , Agua/química , Sitios de Unión , Internet , Ligandos , Proteínas/metabolismo
14.
Bioorg Med Chem Lett ; 27(13): 2996-3002, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28512022

RESUMEN

A new convenient method for preparation of 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives 5b-g and coumarin containing hydrazide-hydrazone analogues 4a-e was presented. The antimycobacterial activity against reference strain Mycobacterium tuberculosis H37Rv and cytotoxicity against the human embryonic kidney cell line HEK-293 were tested in vitro. All compounds demonstrated significant minimum inhibitory concentrations (MIC) ranging 0.28-1.69µM, which were comparable to those of isoniazid. The cytotoxicity (IC50>200µM) to the "normal cell" model HEK-293T exhibited by 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives 5b-e, was noticeably milder compared to that of their hydrazone analogues 4a-e (IC50 33-403µM). Molecular docking studies on compounds 4a-e and 5b-g were also carried out to investigate their binding to the 2-trans-enoyl-ACP reductase (InhA) enzyme involved in M. tuberculosis cell wall biogenesis. The binding model suggested one or more hydrogen bonding and/or arene-H or arene-arene interactions between hydrazones or pyrazole-fused coumarin derivatives and InhA enzyme for all synthesized compounds.


Asunto(s)
Antibacterianos/farmacología , Hidrazinas/farmacología , Hidrazonas/farmacología , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Pirazolonas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Hidrazinas/química , Hidrazonas/química , Estructura Molecular , Mycobacterium tuberculosis/citología , Pirazolonas/síntesis química , Pirazolonas/química , Relación Estructura-Actividad
15.
Nat Prod Commun ; 12(2): 175-178, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30428204

RESUMEN

Silymarin, the active constituent of Silybum marianum (milk thistle), and its main component, silybin, are products with well-known hepatoprotective, cytoprotective, antioxidant, and chemopreventative properties. Despite substantial in vitro and in vivo investigations of these flavonolignans, their mechanisms of action and potential toxic effects are not fully defined. In this study we explored important ADME/Tox properties and biochemical interactions of selected flavonolignans using in silico methods. A quantitative structure-activity relationship (QSAR) model based on data from a parallel artificial membrane permeability assay (PAMPA) was used to estimate bioavailability after oral administration. Toxic effects and metabolic transformations were predicted using the knowledge-based expert systems Derek Nexus and Meteor Nexus (Lhasa Ltd). Potential estrogenic activity of the studied silybin congeners was outlined. To address further the stereospecificity of this effect the stereoisomeric forms of silybin were docked into the ligand-binding domain of the human estrogen receptor alpha (ERa) (MOE software, CCG). According to our results both stereoisomers can be accommodated into the ERa active site, but different poses and interactions were observed for silybin A and silybin B.


Asunto(s)
Silibina/farmacocinética , Humanos , Absorción Intestinal , Modelos Moleculares , Simulación del Acoplamiento Molecular , Silibina/química , Silibina/toxicidad
16.
Biotechnol Biotechnol Equip ; 28(5): 968-974, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26740778

RESUMEN

In this paper, the functional state modelling approach is validated for modelling of the cultivation of two different microorganisms: yeast (Saccharomyces cerevisiae) and bacteria (Escherichia coli). Based on the available experimental data for these fed-batch cultivation processes, three different functional states are distinguished, namely primary product synthesis state, mixed oxidative state and secondary product synthesis state. Parameter identification procedures for different local models are performed using genetic algorithms. The simulation results show high degree of adequacy of the models describing these functional states for both S. cerevisiae and E. coli cultivations. Thus, the local models are validated for the cultivation of both microorganisms. This fact is a strong structure model verification of the functional state modelling theory not only for a set of yeast cultivations, but also for bacteria cultivation. As such, the obtained results demonstrate the efficiency and efficacy of the functional state modelling approach.

17.
Curr Comput Aided Drug Des ; 9(1): 83-94, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23106778

RESUMEN

Understanding protein-ligand interactions is a critical step in rational drug design/virtual ligand screening. In this work we applied the AMMOS_ProtLig software for post-docking optimization of estrogen receptor alpha complexes generated after virtual ligand screening protocol. Using MOE software we identified the ligand-receptor interactions in the optimized complexes at different levels of protein flexibility and compared them to the experimentally observed interactions. We analyzed in details the binding sites of three X-ray complexes of the same receptor and identified the key residues for the protein-ligand interactions. The complexes were further processed with AMMOS_ProtLig and the interactions in the predicted poses were compared to those observed in the X-ray structures. The effect of employing different levels of flexibility was analyzed. The results confirmed the AMMOS_ProtLig applicability as a helpful postdocking optimization tool for virtual ligand screening of estrogen receptors.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Programas Informáticos , Cristalografía por Rayos X , Receptor alfa de Estrógeno/química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica
18.
Eur J Med Chem ; 45(6): 2622-8, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20227800

RESUMEN

Most of the benchmark studies on docking-scoring methods reported in the last decade conclude that no single scoring function performs well across different protein targets. In this study a comparison of thirteen commonly used force field and empirical scoring functions as implemented in DOCK, AMMOS, X-Score and FRED is carried out on five proteins with diverse binding pockets. The performance is analyzed in relation to the physicochemical properties of the binding sites. The solvation effects are considered via the Generalized Born/Surface Area (GBSA) solvation method for one of the assessed scoring functions. We examined the ability of these scoring functions to discriminate between active and inactive compounds over receptor-based focused libraries. Our results demonstrated that the employed here empirical scoring functions were more appropriate for the pocket of predominant hydrophobic nature while the force field scoring functions performed better on the mixed or polar pockets.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Modelos Moleculares , Interfaz Usuario-Computador , Sitios de Unión , Fenómenos Químicos , Conformación Molecular , Unión Proteica , Proteínas/química , Proteínas/metabolismo , Termodinámica
19.
BMC Chem Biol ; 9: 6, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19912625

RESUMEN

BACKGROUND: Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. RESULTS: Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. CONCLUSION: DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.

20.
BMC Bioinformatics ; 9: 438, 2008 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-18925937

RESUMEN

BACKGROUND: Virtual or in silico ligand screening combined with other computational methods is one of the most promising methods to search for new lead compounds, thereby greatly assisting the drug discovery process. Despite considerable progresses made in virtual screening methodologies, available computer programs do not easily address problems such as: structural optimization of compounds in a screening library, receptor flexibility/induced-fit, and accurate prediction of protein-ligand interactions. It has been shown that structural optimization of chemical compounds and that post-docking optimization in multi-step structure-based virtual screening approaches help to further improve the overall efficiency of the methods. To address some of these points, we developed the program AMMOS for refining both, the 3D structures of the small molecules present in chemical libraries and the predicted receptor-ligand complexes through allowing partial to full atom flexibility through molecular mechanics optimization. RESULTS: The program AMMOS carries out an automatic procedure that allows for the structural refinement of compound collections and energy minimization of protein-ligand complexes using the open source program AMMP. The performance of our package was evaluated by comparing the structures of small chemical entities minimized by AMMOS with those minimized with the Tripos and MMFF94s force fields. Next, AMMOS was used for full flexible minimization of protein-ligands complexes obtained from a mutli-step virtual screening. Enrichment studies of the selected pre-docked complexes containing 60% of the initially added inhibitors were carried out with or without final AMMOS minimization on two protein targets having different binding pocket properties. AMMOS was able to improve the enrichment after the pre-docking stage with 40 to 60% of the initially added active compounds found in the top 3% to 5% of the entire compound collection. CONCLUSION: The open source AMMOS program can be helpful in a broad range of in silico drug design studies such as optimization of small molecules or energy minimization of pre-docked protein-ligand complexes. Our enrichment study suggests that AMMOS, designed to minimize a large number of ligands pre-docked in a protein target, can successfully be applied in a final post-processing step and that it can take into account some receptor flexibility within the binding site area.


Asunto(s)
Diseño de Fármacos , Ligandos , Proteínas/metabolismo , Programas Informáticos , Algoritmos , Sitios de Unión , Modelos Moleculares , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Neuraminidasa/metabolismo , Proteínas/química , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/química , Receptores de Estrógenos/metabolismo , Bibliotecas de Moléculas Pequeñas , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...