Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 158: 660-672, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36640955

RESUMEN

The combination of photothermal treatment and chemodynamic therapy has attracted extensive attention for improving therapeutic effects and compensating the insufficiency of monotherapy. In this work, a copper-metal organic framework (Cu-BTC) was used to augment the photothermal effect of polydopamine (PDA) and endow it with a chemodynamic ability by constructing a Cu-BTC@PDA nanocomposite. Density functional theory calculations revealed that the plasmonic vibrations formed by the d-d transition of Cu at the Fermi level in Cu-BTC@PDA could enhance the photothermal performance of PDA. In addition, more Cu2+ released from Cu-BTC@PDA in the acidic microenvironment of the tumor was then reduced to Cu+ by glutathione (GSH) and further catalyzed H2O2 to generate more toxic hydroxyl radical (•OH), which synergized with photothermal treatment for melanoma therapy. Furthermore, Cu-BTC@PDA could quickly and effectively kill bacteria under the action of PTT, and the sustained release of Cu ions could contribute to the long-term and stable bacteriostatic ability of the material. This sustained release of Cu ions could also promote the cell migration and angiogenesis, and upregulate the expression of COL-, TGF-, and VEGF-related genes to accelerate wound healing. This multifunctional nanomaterial has potential application in the treatment of melanoma and repair of wounds. STATEMENT OF SIGNIFICANCE: We constructed a multifunctional nanoplatform (Cu-BTC@PDA) by two steps. This nanoplatform can not only perform cascade catalysis in the tumor microenvironment to generate more toxic hydroxyl radical (•OH), but also synergize with photothermal treatment for melanoma therapy. Additionally, Cu-BTC@PDA possesses enhanced photothermal performance through the plasmonic vibrations formed by the d-d transition of Cu at the Fermi level in Cu-BTC@PDA, which is revealed by DFT calculations. And Cu-BTC@PDA shows good antitumor, antibacterial, and wound healing properties in vivo and in vitro. Such a multifunctional nanomaterial has potential application in the treatment of melanoma and repair of wounds.


Asunto(s)
Melanoma , Estructuras Metalorgánicas , Nanopartículas , Humanos , Línea Celular Tumoral , Cobre/farmacología , Preparaciones de Acción Retardada , Glutatión , Peróxido de Hidrógeno , Radical Hidroxilo , Melanoma/tratamiento farmacológico , Estructuras Metalorgánicas/farmacología , Microambiente Tumoral
2.
Drug Deliv ; 29(1): 1075-1085, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35373691

RESUMEN

Melanoma is one of the highly malignant tumors whose incidence and fatality rates have been increased year by year. However, in addition to early surgical resection, there still lacks specific targeted drugs and treatment strategies. In this study, it was discovered that hinokiflavone (HF) encapsulated in zeolitic imidazolate framework-8 (ZIF-8) exhibited a superior anti-melanoma effect in vitro and in vivo. HF was encapsulated in ZIF-8 through a one-step synthesis method, and polyethylene glycol (PEG-2000) was used to optimize the size and dispersion of the drug-loaded complex (PEG/ZIF-8@HF). The results show that the prepared PEG/ZIF-8@HF has a high encapsulation efficiency (92.12%) and can achieve selective drug release in an acidic microenvironment. The results of in vitro anti-melanoma experiments indicate that PEG/ZIF-8@HF shows up-regulation of reactive oxygen species (ROS) levels and can restrain the migration and invasion of B16F10 cells. Moreover, in vivo animal experiments further confirm that PEG/ZIF-8@HF shows anti-tumor effect by up-regulating the pro-apoptotic proteins caspase-3 and caspase-8, and down-regulating the migration-promoting invasion protein MMP-9. This study developed a safe and effective oral administration of HF based on the high-efficiency delivery ZIF-8 system, which provides an effective treatment strategy for melanoma.


Asunto(s)
Melanoma , Zeolitas , Administración Oral , Animales , Biflavonoides , Sistemas de Liberación de Medicamentos , Melanoma/tratamiento farmacológico , Microambiente Tumoral
3.
Front Plant Sci ; 13: 825117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300009

RESUMEN

Increasing forage yield and nutritional quality under the premise of maintaining relatively stable land area and soil nutrient content is a necessary condition for the sustainable development of grassland animal husbandry. Different cutting models [simulated grazing (SG), hay harvesting (H)] of oat (Avena sativa), common vetch (Vicia sativa) and their mixture (Avena sativa + Vicia sativa) were studied on the Loess Plateau. The results show that (1) SG could increase forage yield, crude protein, and crude fat content and decrease crude ash content. In 2014, the yield of Avena sativa per hectare was 3,578.11 kg higher than that of H; (2) the model analysis for predicting nutritional components showed that the Crude protein (CP) and EE contents of forages in each variety (combination) showed a linear downward trend with increasing forage yield. Redundancy analysis showed that precipitation, especially in the growing season, was positively correlated with grass yield and CP content; and (3) there were significant differences in soil organic carbon, total nitrogen, NO3 --N, and NH4 +-N contents for the different forage varieties (combinations) under different use modes; the values first decreased, then increased, and finally decreased. According to the comprehensive evaluation value calculated by Technique for Order Preference by Similarity to an Ideal Solution, mixed sowing was better than monoculture, and SG obtained better results than H. Overall, mixed sowing under SG can improve forage yield and nutritional quality. At the same time, precipitation regulation is the key factor affecting the production performance of rainfed cultivated grassland on the Loess Plateau.

4.
Small ; 14(16): e1704135, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29527808

RESUMEN

Boron is a narrow-bandgap (1.56 eV) semiconductor with high melting-point, low-density, large Young's modulus and very high refractive index (3.03) close to silicon. Therefore, boron nanostructures is expected to possess strong visible-light scattering properties. However, photonic and optoelectronic properties of the boron nanostructures are seldom studied until now. In this paper, we have successfully prepared single-crystalline boron nanowire (BNW) arrays with high-density on Si substrate. All the BNWs are found to possess strong light-scattering behaviors in the visible regime. Most of all, the scattered light is found to polarize along the longitudinal direction of the nanowire. They also have excellent second-harmonic generation (SHG) properties under ultrafast laser irradiation. Further optoelectronic measurements show that an individual BNW device exhibits notable photocurrent responses in the visible-light range at ambient conditions, which can be attributed to the strong coupling effect between individual BNW and the visible light. The maximum photoresponsivity of an individual BNW can reach up to 12.12 A W-1 at a voltage of 10 V, and the response time is only 18 ms. Therefore, it unveils that the BNWs have a promising future in visible-light communications and detections.

5.
Sci Rep ; 7(1): 13057, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29026102

RESUMEN

There are more or less dopants or defects existing in nanomaterials, so they usually have different conduct-types even for the same substrate. Therefore, fast identification of the conduction-type of nanomaterials is very essential for their practical application in functional nanodevices. Here we use the field emission (FE) technique to research nanomaterials and establish a generalized Schottky-Nordheim (SN) model, in which an important parameter λ (the image potential factor) is first introduced to describe the effective image potential. By regarding λ as the criterion, their energy-band structure can be identified: (a) λ = 1: metal; (b) 0.5 < λ < 1: n-type semiconductor; (c) 0 < λ < 0.5: p-type semiconductor. Moreover, this method can be utilized to qualitatively evaluate the doping-degree for a given semiconductor. We test numerically and experimentally a group of nanomaterial emitters and all results agree with our theoretical results very well, which suggests that our method based on FE measurements should be an ideal and powerful tool to fast ascertain the conduction-type of nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...