Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Sci Total Environ ; 929: 172362, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38649047

Pollution-induced declines in fishery resources restrict the sustainable development of fishery. As a kind of typical environmental pollutant, the mechanism of polycyclic aromatic hydrocarbons (PAHs) facilitating fishery resources declines needs to be fully illustrated. To determine how PAHs have led to declines in fishery resources, a systematic toxicologic analysis of the effects of PAHs on aquatic organisms via food-web bioaccumulation was performed in the Pearl River and its estuary. Overall, PAH bioaccumulation in aquatic organisms was correlated with the trophic levels along food-web, exhibiting as significant positive correlations were observed between PAHs concentration and the trophic levels of fishes in the Pearl River Estuary. Additionally, waterborne PAHs exerted significant direct effects on dietary organisms (P < 0.05), and diet-borne PAHs subsequently exhibited significant direct effects on fish (P < 0.05). However, an apparent block effect was found in dietary organisms (e.g., zooplankton) where 33.49 % of the total system throughput (TST) was retained at trophic level II, exhibiting as the highest PAHs concentration, bioaccumulation factor (BAF), and biomagnification factor (BMF) of ∑15PAHs in zooplankton were at least eight-fold greater than those in fishes in both the Pearl River and its estuary, thereby waterborne PAHs exerted either direct or indirect effects on fishes that ultimately led to food-web simplification. Regardless of the block effect of dietary organisms, a general toxic effect of PAHs on aquatic organisms was observed, e.g., Phe and BaP exerted lethal effects on phytoplankton Chlorella pyrenoidosa and zooplankton Daphnia magna, and decreased reproduction in fishes Danio rerio and Megalobrama hoffmanni via activating the NOD-like receptors (NLRs) signaling pathway. Consequently, an assembled aggregate exposure pathway for PAHs revealed that increases in waterborne PAHs led to bioaccumulation of PAHs in aquatic organisms along food-web, and this in turn decreased the reproductive ability of fishes, thus causing decline in fishery resources.


Aquatic Organisms , Bioaccumulation , Environmental Monitoring , Food Chain , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/metabolism , Animals , Aquatic Organisms/drug effects , Fishes/metabolism , Estuaries , Rivers/chemistry , China
2.
Sci Total Environ ; 853: 158617, 2022 Dec 20.
Article En | MEDLINE | ID: mdl-36084776

Currently, the specific mechanism generating seasonal variation in polycyclic aromatic hydrocarbons (PAHs) via bacterial biodegradation remains unclear, and whether this alteration affects PAH bioaccumulation is unknown. Therefore, we performed a study between 2015 and 2020 to investigate the effects of seasonal variation on bacterial communities and PAH bioaccumulation in the Pearl River Estuary. Significantly high PAH concentrations in both aquatic and fishery species were determined in dry seasons (the mean ∑16PAH concentration: water, 37.24 ng/L (2015), 30.83 ng/L (2020); fish, 51.01 ng/L (2015) and 72.60 ng/L (2020)) compared to wet seasons (the mean ∑16PAH concentration: water, 22.38 ng/L (2015), 19.40 ng/L(2020); fish, 25.28 ng/L (2015) and 32.59 ng/L (2020)). Distinct differences in taxonomic and functional composition of bacterial communities related to biodegradation of low molecular weight PAHs (LMW-PAHs) were observed between seasons, and the concentrations of PAHs were negatively correlated with seasonal variation in temperature. Temperature-related specific bacterial taxa (e.g., Stenotrophomonas) directly or indirectly participated in LMW-PAH degradation via encoding PAH degradation enzymes (e.g., protocatechuate 4,5-dioxygenase) that subsequently led to bioaccumulation of high molecular weight PAHs (HMW-PAHs) in wild and fishery species due to LMW-PAHs in the water. Based on this alteration, the ecological risk posed by PAHs decreased in wet seasons, and an unbalanced spatio-temporal distribution of PAHs was observed in this estuary. These results suggest that seasonal variation of temperature affects HMW-PAH accumulation in fishery species via bacterially mediated LMW-PAH biodegradation.


Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Seasons , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Fisheries , Temperature , Polycyclic Aromatic Hydrocarbons/analysis , Rivers , Water , China , Geologic Sediments
3.
Article En | MEDLINE | ID: mdl-35805446

An investigation of the waters around Macau collected 43 phytoplankton species belonging to 29 genera and 5 phyla, including 32 species from 22 genera of Bacillariophyta, 7 species from 3 genera of Pyrrophyta, 2 species from 2 genera of Cyanophyta, and 1 genus and 1 species from both Euglenophyta and Chromophyta. The dominant phytoplankton species in the study areas were Skeletonema costatum (Greville) Cleve, Aulacoseira granulata (Ehrenberg) Simonsen, Thalassiothrix frauenfeidii Grunow, and Thalassionema nitzschioides Grunow. The phytoplankton abundance in the waters around Macau was between 46,607.14 and 1,355,000 cells/m3, with the highest abundance noted in station S8. Diatoms were the main contributor to phytoplankton abundance in station S8, accounting for 96.2% of the total abundance. Station S4 exhibited the lowest phytoplankton abundance of 46,607.1 cells/m3, with diatoms and Chromophytaaccounting for 58.6% and 29.9% of the total phytoplankton abundance, respectively. Biodiversity analysis results showed that the phytoplankton richness index was 1.18−3.61, the uniformity index was 0.24−0.78, and the Shannon−Wiener index was 0.94−3.41. Correlation analysis revealed that ammonia nitrogen was significantly negatively correlated with the phytoplankton richness, uniformity, and Shannon−Wiener indices. Nitrite nitrogen, nitrate nitrogen, inorganic nitrogen, salinity, turbidity, and pH were positively correlated with the phytoplankton evenness index and Shannon−Wiener index. Cluster and non-metric multidimensional scaling analyses demonstrated that the phytoplankton community structure in the waters around Macau could be divided into three groups, with A. granulata, S. costatum, T. frauenfeidii, T. nitzschioides, Chaetoceros curvisetus Cleve, and Chaetoceros diadema (Ehrenberg) Gran being predominant in different grouping communities (contribution% > 10%). Biota-Environment Stepwise Analysis (BIOENV) showed a significant correlation between the phytoplankton community and nitrite nitrogen content in the waters around Macau (correlation: 0.5544, Mantel test: statistic 0.4196, p = 0.009), which was consistent with the results of the canonical correspondence analysis.


Diatoms , Phytoplankton , China , Environmental Monitoring , Macau , Nitrites , Nitrogen , Seasons
4.
Sci Total Environ ; 827: 154371, 2022 Jun 25.
Article En | MEDLINE | ID: mdl-35259379

To investigate the underlying effects of saltwater intrusion (SWI) on bottom aquatic ecosystems, a set of environmental parameters and the bacterial community were determined and analyzed by sampling bottom water and surface sediments at the Modaomen waterway of the Pearl River Estuary. Biodiversity of fishery species and their relationship with the environment variables were analyzed together. NO3- and NO2- concentration down-regulation and NH4+ concentration up-regulation in water and sediment were observed along the resulting salinity gradient, indicating that SWI affected N-cycling. Further investigation via 16 s sequencing revealed that taxonomic and functional composition of the bacterial community in the sediment displayed greater discretization than in water, implying that SWI exerted a greater impact on the sedimentary bacterial community. Metagenomic sequencing showed that the sedimentary bacterial community was associated with NO3-, NO2-, and NH4+ transformation under SWI, and that this was driven by salinity and conductivity. Nitrogen metabolism and denitrification related genes were expressed at higher levels in high salinity than in low salinity, consistent with the increased enzymatic activities of NiR and NR. The NO2- concentration in the muscle of six selected fishery species was significantly decreased by 11.15-65.74% (P < 0.05) along the salinity gradient, indicating that SWI reduced NO2- accumulation. The results suggest that SWI alleviates NO2- accumulation in demersal fishery species via bacterial mediation of N-cycling.


Ecosystem , Nitrogen Dioxide , Bacteria/genetics , Estuaries , Fisheries , Water
5.
Environ Sci Pollut Res Int ; 29(15): 21981-21997, 2022 Mar.
Article En | MEDLINE | ID: mdl-34775557

It is widely recognized that environmental factors substantially influence on the seasonal and inter-annual variability of bacterioplankton communities, yet little is known about the seasonality of bacterioplankton communities in subtropical estuaries at longer-term time scales. Here, the bacterioplankton communities from the eight major outlets of the subtropical Pearl River Estuary were investigated across 3 years (2017-2019) using full-length 16S rRNA gene sequencing. Significant seasonal and inter-annual variation was observed in bacterioplankton community compositions across the 3 years (p < 0.05). In addition, the inferred functional composition of the communities varied with seasons, although not significantly, suggesting that functional redundancy existed among communities and across seasons that could help to cope with environmental changes. Five evaluated environmental parameters (temperature, salinity, pH, total dissolved solids (TDS), total phosphorus (TP)) were significantly correlated with community composition variation, while only three environmental parameters (temperature, pH, and TDS) were correlated with variation in inferred functional composition. Moreover, community composition tracked the seasonal temperature gradients, indicating that temperature was a key environmental factor that affected bacterioplankton community's variation along with seasonal succession patterns. Gammaproteobacteria and Alphaproteobacteria were the most dominant classes in the surface waters of Pearl River Estuary, and their members exhibited divergent responses to temperature changes, while several taxa within these group could be indicators of low and high temperatures that are associated with seasonal changes. These results strengthen our understanding of bacterioplankton community variation in association with temperature-dependent seasonal changes in subtropical estuarine ecosystems.


Estuaries , Rivers , China , Ecosystem , RNA, Ribosomal, 16S/genetics , Rivers/microbiology , Seasons
6.
Environ Sci Pollut Res Int ; 28(38): 53127-53140, 2021 Oct.
Article En | MEDLINE | ID: mdl-34021891

The goals of this study were to investigate the distribution profiles, sources, and inventory of microplastics in the surface water of the mainstream of the Pearl River (Xijiang River) and its estuary, China, and to assess the potential ecological risks of the microplastics in this subtropical riverine habitat. The results showed that the microplastic abundances of the Humen (HUM, 16.33 ± 0.88 items/L), Zhaoqing (ZQ, 15.33 ± 0.67 items/L), and Hutiaomen (HTM, 14.67 ± 1.33 items/L) sites were significantly higher than those of the other sampling sites, indicating that the microplastics in Xijiang River and its estuary exhibited an unbalanced spatial distribution. The most common microplastic color was transparent and the major shape of the microplastics was fragments. Microplastics with a size of 0.01-0.1 mm were dominant throughout the 16 sampling sites. Polyolefin elastomer (POE, 33.33%), polyethylene terephthalate (PET, 23.81%), and polyurethane acrylate (PUA, 14.29%) were the dominant microplastic polymers. The microplastic abundance co-varied with most of the selected socio-economic indicators, including the population density, urban land area, gross domestic product (GDP), freshwater aquatic products, and freshwater cultivated area, but without significant differences, indicating that there are additional factors affecting the microplastic abundance. The potential risk (i.e., the potential ecological risk, RI; polymer risk index, H; and pollution load index, PLI) posed by the microplastics was higher in HUM, followed by ZQ and HTM, and it was lower for the other sites, suggesting that the main outlets and the biggest city on the Xijiang River contributed more to the high risks of microplastic pollution. Consistent with microplastic abundance distribution profiles, the average potential risk index values of the western river outlets were higher than those of the eastern river outlets and the Xijiang River, implying that the western river outlets had non-negligible potential ecological risks. Our findings deepen the understanding of the risks posed by microplastics and further contribute to microplastic risk management of riverine ecosystems.


Microplastics , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring , Estuaries , Plastics , Rivers , Water Pollutants, Chemical/analysis
7.
Article En | MEDLINE | ID: mdl-33161151

Benzo(α)pyrene (BaP) is one of typical polycyclic aromatic hydrocarbons (PAHs) in aquatic environments and has been shown to cause toxic effects to aquatic animals. Although the negative effects of BaP have been investigated, the potential toxic mechanisms remain uncharacterized. To explore the potential mechanisms mediating the toxic effects of BaP, zebrafish (Danio rerio) were exposed to BaP for 15 days and the toxic effects of BaP in zebrafish liver were investigated using physiological and transcriptomic analyses. After 15-day BaP exposure, zebrafish liver exhibited abnormalities including increased cytoplasmic vacuolation, inflammatory cell infiltration, swelled nuclei and irregular pigmentation. BaP exposure also induced oxidative stress to the liver of zebrafish. Transcriptomic profiles revealed 5129 differentially expressed genes (DEGs) after 15-days of BaP exposure, and the vast majority of DEGs were up-regulated under BaP treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggest that genes related to immune response were significantly dysregulated. Furthermore, the nucleotide-binding, oligomerization domain (NOD)-like receptor signaling pathway was significantly enriched and most of the genes in this pathway exhibited enhanced expression after BaP exposure. These results partially explained the mechanisms underlying the toxic effects of BaP on zebrafish liver. In conclusion, BaP has the potential to induce physiological responses in zebrafish liver through altering associated genes.


Benzo(a)pyrene/toxicity , NLR Proteins/genetics , Signal Transduction/genetics , Transcriptome/drug effects , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Gene Expression Profiling/methods , Gene Ontology , Liver/drug effects , Liver/metabolism , NLR Proteins/metabolism , Oxidative Stress/drug effects , RNA-Seq/methods , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism , Zebrafish Proteins/metabolism
8.
Article En | MEDLINE | ID: mdl-31374294

Phenanthrene (PHE) is a common polycyclic aromatic hydrocarbon (PAH) in aquatic environments, and this contaminant can cause adverse effects on teleostean performance. In this study, we exposed the model freshwater fish (zebrafish; Danio rerio) to 300 µg/L PHE for 15 days. Histological analysis demonstrated that liver morphology deteriorated in PHE-exposed zebrafish, and cellular damage in the liver increased. Biological analysis revealed that exposure to PHE elicited significant changes in glutathione S-transferases (GST) and superoxide dismutase (SOD) activities. 476 differentially expressed genes (DEGs) were identified in liver between control and PHE treated groups through the transcriptomic analysis. Gene Ontology enrichment analysis (GO) suggested that PHE exposure induced changes in the expression of genes associated with "lipid transporter activity", "catalytic activity", "metal ion binding", "lipid transport" and "transmembrane transport". Furthermore, the "vitamin digestion and absorption" and "fat digestion and absorption" pathways enriched in Kyoto Encyclopedia of Genes and Genomes analysis (KEGG). Additionally, five candidate biomarkers associated with the PHE response in zebrafish were identified. In conclusion, our results elucidate the physiological and molecular responses to PHE exposure in the liver of zebrafish, and provide a framework for further studies of the mechanisms underlying the toxic effects of polycyclic aromatic hydrocarbons (PAHs) on aquatic organisms.


Liver , Phenanthrenes/toxicity , Transcriptome , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism , Animals , Biomarkers/metabolism , Gene Expression Profiling , Glutathione Transferase/metabolism , Liver/metabolism , Liver/pathology , Oxidative Stress , Superoxide Dismutase/metabolism
9.
Mar Pollut Bull ; 136: 309-321, 2018 Nov.
Article En | MEDLINE | ID: mdl-30509812

In this study, we used high-throughput sequencing of 16S rRNA gene amplicons, to investigate the spatio-temporal variation in bacterial communities in surface-waters collected from eight major outlets of the Pearl River Estuary, South China. Betaproteobacteria were the most abundant class among the communities, followed by Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, and Acidimicrobiia. Generally, alpha-diversity increased in winter communities and the taxonomic diversity of bacterial communities differed with seasonal and spatial differences. Temperature, conductivity, salinity, pH and nutrients were the crucial environmental factors associated with shifts in the bacterial community composition. Furthermore, inferred community functions that were associated with amino acid, carbohydrate and energy metabolisms were lower in winter, whereas the relative abundance of inferred functions associated with membrane transport, bacterial motility proteins, and xenobiotics biodegradation and metabolism, were enriched in winter. These results provide new insights into the dynamics of bacterial communities within estuarine ecosystems.


Environmental Monitoring/methods , Estuaries , Proteobacteria/classification , Rivers/microbiology , Biodiversity , China , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Rivers/chemistry , Salinity , Seasons , Water Pollution/analysis
...