Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 5(5): 101554, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38729157

RESUMEN

The axons of retinal ganglion cells (RGCs) form the optic nerve, transmitting visual information from the eye to the brain. Damage or loss of RGCs and their axons is the leading cause of visual functional defects in traumatic injury and degenerative diseases such as glaucoma. However, there are no effective clinical treatments for nerve damage in these neurodegenerative diseases. Here, we report that LIM homeodomain transcription factor Lhx2 promotes RGC survival and axon regeneration in multiple animal models mimicking glaucoma disease. Furthermore, following N-methyl-D-aspartate (NMDA)-induced excitotoxicity damage of RGCs, Lhx2 mitigates the loss of visual signal transduction. Mechanistic analysis revealed that overexpression of Lhx2 supports axon regeneration by systematically regulating the transcription of regeneration-related genes and inhibiting transcription of Semaphorin 3C (Sema3C). Collectively, our studies identify a critical role of Lhx2 in promoting RGC survival and axon regeneration, providing a promising neural repair strategy for glaucomatous neurodegeneration.


Asunto(s)
Axones , Modelos Animales de Enfermedad , Glaucoma , Proteínas con Homeodominio LIM , Regeneración Nerviosa , Células Ganglionares de la Retina , Factores de Transcripción , Animales , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Proteínas con Homeodominio LIM/metabolismo , Proteínas con Homeodominio LIM/genética , Glaucoma/genética , Glaucoma/patología , Glaucoma/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Axones/metabolismo , Axones/patología , Ratones , Regeneración Nerviosa/genética , Regeneración Nerviosa/fisiología , Ratones Endogámicos C57BL , Supervivencia Celular/genética , Semaforinas/metabolismo , Semaforinas/genética , N-Metilaspartato/metabolismo
2.
Front Cell Neurosci ; 14: 131, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670021

RESUMEN

Trauma or neurodegenerative diseases trigger the retrograde death of retinal ganglion cells (RGCs), causing an irreversible functional loss. AT-rich interaction domain 1A (ARID1A), a subunit of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex, has been shown to play crucial roles in cell homeostasis and tissue regeneration. However, its function in adult RGC regeneration remains elusive. Here, we show that optic nerve injury induces dynamic changes of Arid1a expression. Importantly, deleting Arid1a in mice dramatically promotes RGC survival, but insignificantly impacts axon regeneration after optic nerve injury. Next, joint profiling of transcripts and accessible chromatin in mature RGCs reveals that Arid1a regulates several genes involved in apoptosis and JAK/STAT signaling pathway. Thus, our findings suggest modulation of Arid1a as a potential therapeutic strategy to promote RGC neuroprotection after damage.

3.
Front Cell Neurosci ; 14: 119, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477071

RESUMEN

Mammalian retinal ganglion cells (RGCs) in the central nervous system (CNS) often die after optic nerve injury and surviving RGCs fail to regenerate their axons, eventually resulting in irreversible vision loss. Manipulation of a diverse group of genes can significantly boost optic nerve regeneration of mature RGCs by reactivating developmental-like growth programs or suppressing growth inhibitory pathways. By injury of the vision pathway near their brain targets, a few studies have shown that regenerated RGC axons could form functional synapses with targeted neurons but exhibited poor neural conduction or partial functional recovery. Therefore, the functional restoration of eye-to-brain pathways remains a greatly challenging issue. Here, we review recent advances in long-distance optic nerve regeneration and the subsequent reconnecting to central targets. By summarizing our current strategies for promoting functional recovery, we hope to provide potential insights into future exploration in vision reformation after neural injuries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA