Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39204367

RESUMEN

Skin pigmentation typically arises from the excessive secretion and accumulation of melanin, resulting in a darker complexion compared to normal skin. Currently, the local application of chemical drugs is a first-line strategy for pigmentation disorders, but the safety and efficacy of drugs still cannot meet clinical treatment needs. For long-term and safe medication, researchers have paid attention to natural products with higher biocompatibility. This article begins by examining the pathogenesis and treatment approaches of skin pigmentation diseases and summarizes the research progress and mechanism of natural products with lightening or whitening effects that are clinically common or experimentally proven. Moreover, we outline the novel formulations of natural products in treating pigmentation disorders, including liposomes, nanoparticles, microemulsions, microneedles, and tocosomes. Finally, the pharmacodynamic evaluation methods in the study of pigmentation disorder were first systematically analyzed. In brief, this review aims to collect natural products for skin pigmentation treatment and investigate their formulation design and efficacy evaluation to provide insights for the development of new products for this complex skin disease.

2.
Pharmaceutics ; 15(7)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37514192

RESUMEN

Poor transdermal permeability limits the possibility of most drug delivery through the skin. Auxiliary permeable microneedles (AP-MNs) with a three-dimensional network structure can effectively break the skin stratum corneum barrier and assist in the transdermal delivery of active ingredients. Herein, we propose a simple method for preparing AP-MNs using polyvinyl alcohol and Eudragit NM30D for the first time. To optimize the formulation of microneedles, the characteristics of swelling properties, skin insertion, solution viscosity, and needle integrity were systematically examined. Additionally, the morphology, mechanical strength, formation mechanism, skin permeability, swelling performance, biocompatibility, and in vitro transdermal drug delivery of AP-MNs were evaluated. The results indicated that the microneedles exhibited excellent mechanical-strength and hydrogel-forming properties after swelling. Further, it proved that a continuous and unblockable network channel was created based on physical entanglement and encapsulation of two materials. The 24 h cumulative permeation of acidic and alkaline model drugs, azelaic acid and matrine, were 51.73 ± 2.61% and 54.02 ± 2.85%, respectively, significantly enhancing the transdermal permeability of the two drugs. In summary, the novel auxiliary permeable microneedles prepared through a simple blending route of two materials was a promising and valuable way to improve drug permeation efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA