Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Insect Mol Biol ; 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38478920

Odorant-binding proteins (OBPs) initiate insect olfactory perception and mediate specific binding and selection of odorants via uncertain binding mechanisms. We characterized the binding characteristics of four OBPs from the striped flea beetle Phyllotreta striolata (SFB), a major cruciferous crop pest. Tissue expression analysis revealed that the two ABPII OBPs (PstrOBP12 and PstrOBP19) were highly expressed mainly in the antenna, whereas the two minus-C OBPs (PstrOBP13 and PstrOBP16) showed a broad expression pattern. Competitive binding assays of cruciferous plant volatiles showed that PstrOBP12, PstrOBP16 and PstrOBP19 had very strong binding capacities for only two phthalate esters (Ki < 20 µM), and PstrOBP13 specifically bound to four aromatic volatiles (Ki < 11 µM). Fluorescence quenching assays displayed that two phthalate esters bound to three PstrOBPs via different quenching mechanisms. PstrOBP12/PstrOBP16-diisobutyl phthalate and PstrOBP19-bis(6-methylheptyl) phthalate followed static quenching, while PstrOBP12/PstrOBP16-bis(6-methylheptyl) phthalate and PstrOBP19-diisobutyl phthalate followed dynamic quenching. Homology modelling and molecular docking displayed that PstrOBP12-diisobutyl phthalate was driven by H-bonding and van der Waals interactions, while PstrOBP16-diisobutyl phthalate and PstrOBP19-bis(6-methylheptyl) phthalate followed hydrophobic interactions. Finally, behavioural activity analysis demonstrated that phthalate esters exhibited different behavioural activities of SFB at different doses, with low doses attracting and high doses repelling. Overall, we thus revealed the different binding properties of the three PstrOBPs to two phthalate esters, which was beneficial in shedding light on the ligand-binding mechanisms of OBPs.

2.
Insects ; 15(3)2024 Feb 21.
Article En | MEDLINE | ID: mdl-38535339

Plutella xylostella, a destructive crucifer pest, can rapidly develop resistance to most classes of pesticides. This study investigated the molecular resistance mechanisms to chlorpyrifos, an organophosphate pesticide. Two P. xylostella genes, ace1 and ace2, were described. The nucleotide sequence results revealed no variation in ace2, while the resistant strain (Kar-R) had four amino acid alterations in ace1, two of which (A298S and G324A) were previously shown to confer organophosphate resistance in P. xylostella. In the present study, the 3D model structures of both the wild-type (Gu-S) and mutant (Kar-R) of P. xylostella ace1 strains were studied through molecular dynamics (MDs) simulations and molecular docking. Molecular dynamics simulations of RMSD revealed less structural deviation in the ace1 mutant than in its wild-type counterpart. Higher flexibility in the 425-440 amino acid region in the mutant active site (Glu422 and Acyl pocket) increased the active site's entropy, reducing the enzyme's affinity for the inhibitors. Gene expression analysis revealed that the relative transcription levels of ace1 were significantly different in the Kar-R strain compared with the Gu-S strain. This study enhances the understanding of the mechanisms governing ace1's resistance to insecticide and provides essential insights for new insecticides as well as valuable insights into environmentally conscious pest management techniques.

3.
J Exp Bot ; 74(6): 2146-2159, 2023 03 28.
Article En | MEDLINE | ID: mdl-36648335

The whitefly Bemisia tabaci is a piercing-sucking herbivore that reduces the yields of crops both by feeding on plants and transmitting plant viruses. Like most plant feeders, B. tabaci has evolved ways to avoid plant defence responses. For example, B. tabaci is known to secrete salivary effectors to suppress host defences. However, the nature of B. tabaci effectors is not completely understood. In this study, we used B. tabaci genomic and salivary gland transcriptomic data and an overexpression system to identify a previously unknown B. tabaci salivary effector, BtE3. BtE3 is specifically expressed in the head (containing primary salivary glands) and is secreted into hosts during B. tabaci feeding. In planta overexpression of BtE3 blocked Burkholderia glumae-induced hypersensitive response (HR) in both Nicotiana benthamiana and Solanum lycopersicum. Silencing of BtE3 by plant-mediated RNAi prevented B. tabaci from continuously ingesting phloem sap, and reduced B. tabaci survival and fecundity. Moreover, overexpression of BtE3 in planta up-regulated the salicylic acid- (SA-) signalling pathway, but suppressed the downstream jasmonic acid- (JA-) mediated defences. Taken together, these results indicate that BtE3 is a B. tabaci-specific novel effector involved in B. tabaci-plant interactions. These findings increase our understanding of B. tabaci effectors and suggest novel strategies for B. tabaci pest management.


Hemiptera , Solanum lycopersicum , Animals , Hemiptera/physiology , Nicotiana/genetics , Signal Transduction , Solanum lycopersicum/genetics , Crops, Agricultural
7.
Insects ; 12(3)2021 Mar 17.
Article En | MEDLINE | ID: mdl-33802990

Chitinases are of great importance in chitin degradation and remodeling in insects. However, the genome-wide distribution of chitinase-like gene family in Bemsia tabaci, a destructive pest worldwide, is still elusive. With the help of bioinformatics, we annotated 14 genes that encode putative chitinase-like proteins, including ten chitinases (Cht), three imaginal disk growth factors (IDGF), and one endo-ß-N-acetylglucosaminidase (ENGase) in the genome of the whitefly, B. tabaci. These genes were phylogenetically grouped into eight clades, among which 13 genes were classified in the glycoside hydrolase family 18 groups and one in the ENGase group. Afterwards, developmental expression analysis suggested that BtCht10, BtCht5, and BtCht7 were highly expressed in nymphal stages and exhibit similar expression patterns, implying their underlying role in nymph ecdysis. Notably, nymphs exhibited a lower rate of survival when challenged by dsRNA targeting these three genes via a nanomaterial-promoted RNAi method. In addition, silencing of BtCht10 significantly resulted in a longer duration of development compared to control nymphs. These results indicate a key role of BtCht10, BtCht5, and BtCht7 in B. tabaci nymph molting. Our research depicts the differences of chitinase-like family genes in structure and function and identified potential targets for RNAi-based whitefly management.

8.
Insect Sci ; 28(6): 1541-1552, 2021 Dec.
Article En | MEDLINE | ID: mdl-33399267

The invasive pest whitefly (Bemisia tabaci) is a complex species, of which Middle East-Minor Asia 1 (MEAM1) and Mediterranean (MED) are the two most damaging members. Previous research showed that cabbage is frequently infested with MEAM1 but seldomly with MED, and this difference in performance is associated with glucosinolate (GS) content. Some insects can modify GS using glucosinolate sulfatase (SULF), the activity of which is regulated by sulfatase modifying factor 1 (SUMF1); therefore, to increase our understanding of different performances of MEAM1 and MED on cabbage plants, we identified and compared nine putative SULFs and one SUMF in MEAM1 and MED. We found that the lengths of two genes, BtSulf2 and BtSulf4, differed between MEAM1 and MED. The messenger RNA levels of BtSulf4 increased more than 20-fold after MEAM1 and MED adults were exposed to GS, but BtSulf2 expression was only induced by GS in MEAM1. Knockdown of BtSulf2 and BtSulf4 in MEAM1 resulted in a substantial increase in the mortality of GS-treated adults but not in MED. These results indicate that differences in BtSulf2 and BtSulf4 sequences and/or expression may explain why MEAM1 performs better than MED on cabbage. Our results provide a basis for future functional research on SULF and SUMF in B. tabaci.


Glucosinolates , Hemiptera , Insect Proteins/genetics , Sulfatases , Animals , Brassica , Hemiptera/enzymology , Hemiptera/genetics , Middle East , Sulfatases/genetics
9.
J Econ Entomol ; 112(6): 2790-2796, 2019 12 09.
Article En | MEDLINE | ID: mdl-31314897

Tomato yellow leaf curl virus (TYLCV), a begomovirus (genus Begomovirus) is the causal agent of tomato yellow leaf curl disease (TYLCD), which causes severe damage to tomato (Solanum lycopersicum) crops throughout tropical and subtropical regions of the world. TYLCV is transmitted by the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in a circulative and persistent manner. Our previous studies showed that tomato flavonoids deter B. tabaci oviposition, but the effects of tomato flavonoids on the settling and feeding behavior of B. tabaci and on its transmission of TYLCV are unknown. Using two near-isogenic tomato lines that differ greatly in flavonoid levels, we found that high flavonoid production in tomato deterred the landing and settling of B. tabaci. Moreover, electrical penetration graph studies indicated that high flavonoid levels in tomato reduced B. tabaci probing and phloem-feeding efficiency. As a consequence, high flavonoid levels in tomato reduced the primary and secondary spread of TYLCV. The results indicate that tomato flavonoids provide antixenosis resistance against B. tabaci and that the breeding of such resistance in new varieties could enhance TYLCD management.


Begomovirus , Hemiptera , Solanum lycopersicum , Animals , Flavonoids , Insect Vectors , Plant Diseases
10.
J Exp Bot ; 70(12): 3343-3355, 2019 06 28.
Article En | MEDLINE | ID: mdl-30949671

The whitefly Bemisia tabaci is an important pest of worldwide agriculture. Previous work has shown that B. tabaci actively suppresses host plant defenses, but our knowledge of the specific mechanisms involved remains limited. Here we describe a B. tabaci salivary protein, the ferritin BtFer1, and its role in facilitating exploitation of host plants. We show that BtFer1 exhibits Fe2+ binding ability and ferroxidase activity, and that secretion of BtFer1 during B. tabaci feeding suppresses H2O2-generated oxidative signals in tomato (Solanum lycopersicum). Silencing BtFer1 enhanced the induction of the jasmonic acid (JA)-mediated defense signaling pathway in response to whitefly feeding, and led to increased callose deposition and the production of proteinase inhibitors that prevent whiteflies from continuously ingesting and digesting phloem sap. Consistent with these effects, silencing BtFer1 reduced whitefly survival on tomato but not on artificial diet. Using a JA-deficient spr2 mutant plant further showed that suppression of JA defenses by BtFer1 is sufficient to increase B. tabaci survival. Taken together, these results demonstrate that BtFer1 acts as an effector protein that mediates whitefly-tomato interactions. These findings represent an important step forward in understanding the molecular mechanisms by which whiteflies and other insect herbivores suppress host plant defenses.


Ferritins/genetics , Hemiptera/genetics , Herbivory , Insect Proteins/genetics , Signal Transduction , Solanum lycopersicum/physiology , Animals , Cyclopentanes/metabolism , Ferritins/metabolism , Food Chain , Hemiptera/metabolism , Insect Proteins/metabolism , Oxylipins/metabolism , Saliva/chemistry
11.
J Exp Clin Cancer Res ; 37(1): 284, 2018 Nov 26.
Article En | MEDLINE | ID: mdl-30477538

BACKGROUND: MNAT1 (menage a trois 1, MAT1), a cyclin-dependent kinase-activating kinase (CAK) complex, high expresses in various cancers and is involved in cancer pathogenesis. However, mechanisms underlying its regulation in carcinogenesis are unclear. METHODS: The tissue microarray of colorectal cancer (CRC) was used to evaluate MNAT1 expressions in CRC tissues using immunohistochemistry, CRC cell lines were also detected MNAT1 expression using Western-blotting. MNAT1 and shMNAT1 vectors were constructed, and transfected into CRC cells. Cell growths of the transfected cells were observed using MTT and colony formation. The affects of MNAT1 on p53 expression were analyzed using Western-blotting and Real-time PCR. Immunoprecipitation assay was used to analyze the interaction p53 and MNAT1, and Western-blotting was used to test the effects of MNAT1 on p53 downstream molecules. The apoptosis of CRC cells with MNAT1 or shMNAT1 were analyzed using flow cytometry. BABL/c athymic nude mice were used to observe the effect of MNAT1 on CRC cell growth in vivo. RESULTS: MNAT1 was found to be overexpressed in CRC tissues and cells, and MNAT1 expressions in CRC tissue samples were associated with CRC carcinogenesis and poor patient outcomes. MNAT1-knockin increased CRC cell growth and colony formation, and MNAT1-knockdown dramatically decreased cell motility and invasion. MNAT1 physically interacted with p53, MNAT1 also increased the interaction of MDM2 with p53. Strikingly, MNAT1 mediated p53 ubiquitin-degradation. MNAT1 shortened p53 half-life, and ectopic MNAT1 expression decreased p53 protein stability. Moreover, MNAT1 induced RAD51 and reduced p21, cleaved-caspase3, cleaved-PARP and BAX expression. MNAT1 inhibited CRC cell apoptosis. shMANT1 decreased tumor growths in nude mice following p53 increase. CONCLUSION: MNAT1 binds to p53, mediates p53 ubiquitin-degradation through MDM2, increases cell growth and decreases cell apoptosis, and finally promotes CRC malignance. MNAT1 binding to p53 and mediating p53 ubiquitin-degradation axis represents a novel molecular joint in the p53 pathway.


Carrier Proteins/biosynthesis , Colorectal Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin/metabolism , Adult , Aged , Apoptosis/physiology , Carcinogenesis , Carrier Proteins/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Humans , Middle Aged , Transcription Factors , Transfection , Tumor Suppressor Protein p53/genetics
12.
Front Physiol ; 8: 146, 2017.
Article En | MEDLINE | ID: mdl-28360861

Although, insect herbivores are generally thought to select hosts that favor the fitness of their progeny, this "mother-knows-best" hypothesis may be challenged by the presence of a plant virus. Our previous study showed that the whitefly, Bemisia tabaci, the obligate vector for transmitting Tomato yellow leaf curl virus (TYLCV), preferred to settle and oviposit on TYLCV-infected rather than healthy host plant, Datura stramonium. The performances of B. tabaci larvae and adults were indeed improved on virus-infected D. stramonium, which is consistent with "mother-knows-best" hypothesis. In this study, B. tabaci Q displayed the same preference to settle and oviposit on Tomato spotted wilt virus (TSWV)-infected host plants, D. stramonium and Capsicum annuum, respectively. As a non-vector of TSWV, however, insect performance was impaired since adult body size, longevity, survival, and fecundity were reduced in TSWV infected D. stramonium. This appears to be an odor-mediated behavior, as plant volatile profiles are modified by viral infection. Infected plants have reduced quantities of o-xylene and α-pinene, and increased levels of phenol and 2-ethyl-1-hexanol in their headspace. Subsequent behavior experiments showed that o-xylene and α-pinene are repellant, while phenol and 2-ethyl-1-hexanol are attractive. This indicates that the preference of B. tabaci for virus-infected plants is modulated by the dynamic changes in the volatile profiles rather than the subsequent performances on virus-infected plants.

13.
Int J Mol Sci ; 17(7)2016 Jun 30.
Article En | MEDLINE | ID: mdl-27376280

The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles-especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles.


Hemiptera/drug effects , Solanum lycopersicum/metabolism , Volatile Organic Compounds/pharmacology , Animals , Begomovirus/genetics , Choice Behavior/physiology , Cyclohexenes/pharmacology , Hemiptera/physiology , Limonene , Solanum lycopersicum/drug effects , Olfactometry , Salicylic Acid/pharmacology , Terpenes/pharmacology , Viral Proteins/genetics , Viral Proteins/metabolism , Volatile Organic Compounds/metabolism
14.
Oncotarget ; 7(6): 7012-28, 2016 Feb 09.
Article En | MEDLINE | ID: mdl-26755651

Cyclin dependent kinase-3 (Cdk3) is a positive regulator of the G1 mammalian cell cycle phase. Cdk3 is involved in cancer progression, but very little is known about its mechanism in cancer development and progression. Herein, we found that Cdk3 increased colorectal cancer metastasis through promoting epithelial-mesenchymal transition (EMT) shift. Cdk3 was found to highly express in metastatic cancer and induce cell motility and invasion. Cdk3 was shown to phosphorylate c-Jun at Ser 63 and Ser 73 in vitro and ex vivo. Cdk3-phosphorylated c-Jun at Ser 63 and Ser 73 resulted in an increased AP-1 activity. Ectopic expression of Cdk3 promoted colorectal cancer from epithelial to mesenchymal transition conjugating AP-1 activation, while AP-1 inhibition dramatically decreased Cdk3-increased EMT shift. These results showed that the Cdk3/c-Jun signaling axis mediating epithelial-mesenchymal transition plays an important role in colorectal cancer metastasis.


Colorectal Neoplasms/metabolism , Colorectal Neoplasms/secondary , Cyclin-Dependent Kinase 3/metabolism , Epithelial-Mesenchymal Transition , Transcription Factor AP-1/metabolism , Animals , Apoptosis , Blotting, Western , Case-Control Studies , Cell Movement , Cell Proliferation , Colon/metabolism , Colon/pathology , Female , Fluorescent Antibody Technique , Humans , Immunoenzyme Techniques , Immunoprecipitation , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Prognosis , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
15.
Epilepsy Res ; 114: 78-80, 2015 Aug.
Article En | MEDLINE | ID: mdl-26088889

PURPOSE: The aim of this study was to investigate the distribution and frequency of genetic polymorphisms in uridine diphosphate glucuronosyltransferase-2B7 (UGT2B7) in epilepsy patients and to evaluate the effect of these on the metabolism of valproic acid (VPA). METHODS: Single nucleotide polymorphisms in UGT2B7 were investigated in 102 epilepsy patients using DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism analysis. The steady-state plasma concentrations of VPA were determined in these patients, who had received VPA (approx. 500-1000 mg/day) for at least 2 weeks. RESULTS: Fourteen patients had the CC genotype at UGT2B7 C802T, 46 carried CT, and 42 carried the TT genotype. At UGT2B7 G211T, 78 patients had the GG genotype, 23 carried GT, and one individual had the TT genotype. The standardized trough plasma concentration of VPA was much lower in those patients with a T allele at UGT2B7 C802T than in those with the CC genotype (TT, 2.11 ± 1.26; CT, 2.31 ± 1.25; CC, 3.02 ± 1.32 µg kg mL(-1) mg(-1), p < 0.01). However, UGT2B7 G211T polymorphisms had no influence on the plasma concentration of VPA (GG, 2.28 ± 1.32, GT, 2.303 ± 1.38 µg kg mL(-1) mg(-1)). CONCLUSION: These results suggested that UGT2B7 C802T may be an important determinant of individual variability in the pharmacokinetics of VPA and that it may be necessary to increase the VPA dose for individuals with a T allele in order to achieve the therapeutic range of 50-100 µg/mL.


Anticonvulsants/pharmacokinetics , Epilepsy/metabolism , Glucuronosyltransferase/genetics , Valproic Acid/pharmacokinetics , Adult , Alleles , Anticonvulsants/therapeutic use , Asian People , Epilepsy/drug therapy , Female , Genotype , Humans , Male , Polymorphism, Single Nucleotide , Sex Characteristics , Valproic Acid/therapeutic use , Young Adult
16.
Sci Rep ; 5: 10744, 2015 May 29.
Article En | MEDLINE | ID: mdl-26021483

Bemisia tabaci is a serious pest of vegetables and other crops worldwide. The most damaging and predominant B. tabaci biotypes are B and Q, and both are vectors of tomato yellow leaf curl virus (TYLCV). Previous research has shown that Q outperforms B in many respects but comparative research is lacking on the ability of B and Q to transmit viruses. In the present study, we tested the hypothesis that B and Q differ in their ability to transmit TYLCV and that this difference helps explain TYLCV outbreaks. We compared the acquisition, retention, and transmission of TYLCV by B and Q females and males. We found that Q females are more efficient than Q males, B females, and B males at TYLCV acquisition and transmission. Although TYLCV acquisition and transmission tended to be greater for B females than B males, the differences were not statistically significant. Based on electrical penetration graphs determination of phloem sap ingestion parameters, females fed better than males, and Q females fed better than Q males, B females, or B males. These results are consistent with the occurrences of TYLCV outbreaks in China, which have been associated with the spread of Q rather than B.


Hemiptera/virology , Insect Vectors/virology , Plant Diseases/virology , Solanum lycopersicum/virology , Animals , Begomovirus/pathogenicity , China , Crops, Agricultural
17.
Int J Mol Sci ; 15(11): 20054-71, 2014 Nov 04.
Article En | MEDLINE | ID: mdl-25375189

N,N'-dinitrosopiperazine (DNP) with organ specificity for nasopharyngeal epithelium, is involved in nasopharyngeal carcinoma (NPC) metastasis, though its mechanism is unclear. To reveal the pathogenesis of DNP-induced metastasis, immunoprecipitation was used to identify DNP-mediated phosphoproteins. DNP-mediated NPC cell line (6-10B) motility and invasion was confirmed. Twenty-six phosphoproteins were increased at least 1.5-fold following DNP exposure. Changes in the expression levels of selected phosphoproteins were verified by Western-blotting analysis. DNP treatment altered the phosphorylation of ezrin (threonine 567), vimentin (serine 55), stathmin (serine 25) and STAT3 (serine 727). Furthermore, it was shown that DNP-dependent metastasis is mediated in part through ezrin at threonine 567, as DNP-mediated metastasis was decreased when threonine 567 of ezrin was mutated. Strikingly, NPC metastatic tumors exhibited a higher expression of phosphorylated-ezrin at threonine 567 than the primary tumors. These findings provide novel insight into DNP-induced NPC metastasis and may contribute to a better understanding of the metastatic mechanisms of NPC tumors.


Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Nitrosamines/toxicity , Phosphoproteins/metabolism , Blotting, Western , Carcinoma , Cell Death/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cytoskeletal Proteins/metabolism , Electrophoresis, Gel, Two-Dimensional , Humans , Mass Spectrometry , Nasopharyngeal Carcinoma , Neoplasm Invasiveness , Neoplasm Metastasis , Nitrosamines/chemistry , Phosphorylation/drug effects , Phosphothreonine/metabolism , Proteomics , Reproducibility of Results
18.
BMC Cancer ; 14: 243, 2014 04 05.
Article En | MEDLINE | ID: mdl-24708550

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic cancer. N,N'-dinitrosopiperazine (DNP), a carcinogen with specificity for nasopharyngeal epithelium, facilitates NPC metastasis. However, the underlying mechanism is not known. METHODS: Quantitative phosphoproteomics, using stable isotope labeling of amino acids in cell cultures, was employed to identify phosphoproteins associated with NPC metastasis mediated by DNP. NPC cell line 6-10B, which is relatively less metastatic, was used to investigate DNP-mediated metastasis. Boyden chamber invasion assay was used to measure DNP-induced motility and invasion, and nude mice were used to verify DNP-mediated metastasis in vivo. Several different phosphoproteins detected by proteomics analysis were verified by immunoblotting. DNP-mediated metastasis facilitated by lysine-rich CEACAM1 co-isolated protein (LYRIC) phosphorylation at serine 568 was confirmed using mutations targeting the phosphorylation site of LYRIC. DNP-mediated metastasis through LYRIC phosphorylation was confirmed in the NPC cell line CNE1. DNP-mediated LYRIC phosphorylation at serine 568 was also verified in metastatic tumors of BABL/c nude mice. RESULTS: Boyden chamber invasion assay indicated that DNP mediated cell motility and invasion of NPC cell 6-10B in vitro, and experiments with nude mice indicated that DNP increased 6-10B metastasis in vivo. In the phosphoproteomics analysis, we detected 216 phosphorylation sites on 130 proteins; among these, 48 phosphorylation sites on 30 unique phosphopeptides were modulated by DNP by at least 1.5-fold. DNP mediated the expression of phosphorylated GTPase, ferritin, LYRIC, and RNA polymerase, and it decreased the expression of phosphorylated torsin-1A protein 1. Furthermore, DNP induced LYRIC phosphorylation at serine 568 to facilitate cell motility and invasion, whereas DNP-mediated motility and invasion was decreased when serine 568 in LYRIC was mutated. In another NPC cell line, CNE1, DNP also mediated cell motility and invasion followed by enhanced phosphorylation of LYRIC at serine 568. Finally, phosphorylated-LYRIC expression at serine 568 was significantly increased in metastatic tumors induced by DNP. CONCLUSION: DNP regulates multiple signaling pathways through protein phosphorylation, including the phosphorylation of LYRIC at serine 568, and mediates NPC metastasis. These findings provide insights on the complexity and dynamics of DNP-facilitated metastasis, and may help to gain a better understanding of the mechanisms by clarifying NPC-induced metastasis.


Nasopharyngeal Neoplasms/genetics , Nitrosamines/toxicity , Phosphoproteins/biosynthesis , Proteomics , Animals , Carcinoma , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Isotope Labeling , Mice , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/pathology , Neoplasm Invasiveness/genetics , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
19.
PLoS One ; 9(4): e92081, 2014.
Article En | MEDLINE | ID: mdl-24717913

Nasopharyngeal carcinoma (NPC) has a high metastatic character in the clinic, but its mechanism is not clear. As a carcinogen with organ specificity for the nasopharyngeal epithelium, N,N'-Dinitrosopiperazine (DNP) is involved in NPC metastasis. Herein, our data revealed that anterior gradient 2 (AGR2) was overexpressed in human NPC tissues, particularly in cervical lymph node metastatic NPC (LMNPC). High AGR2 expression was associated with NPC metastasis. Importantly, DNP induced AGR2 expression, and increased cell motility and invasion in the NPC cell line 6-10B. However, DNP-mediated cell motility and invasion was dramatically decreased when transfected with siRNA-AGR2. Further, AGR2 directly regulated cathepsin (CTS) B and D by binding them in vitro. These results indicate that DNP induces AGR2 expression, regulates CTSB and CTSD, increases cell motility and invasion, and promotes NPC tumor metastasis. Therefore, DNP-mediated AGR2 expression may be an important factor in prolific NPC metastasis.


Lymphatic Metastasis/pathology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Nitrosamines/adverse effects , Proteins/metabolism , Carcinoma , Cathepsin B/metabolism , Cathepsin D/metabolism , Cell Line, Tumor , Cell Movement , Epithelium/metabolism , Epithelium/pathology , Humans , Immunohistochemistry , Mucoproteins , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/enzymology , Neoplasm Invasiveness , Oncogene Proteins , Protein Binding , RNA, Small Interfering/metabolism
20.
World J Biol Chem ; 4(4): 91-101, 2013 Nov 26.
Article En | MEDLINE | ID: mdl-24340132

Cathepsins are highly expressed in various human cancers, associated with tumor metastasis. It is superfamily, concluding A, B, C, D, E, F, G, H, L, K, O, S, V, and W family members. As a group of lysosomal proteinases or endopeptidases, each member has a different function, playing different roles in distinct tumorigenic processes such as proliferation, angiogenesis, metastasis, and invasion. Cathepsins belong to a diverse number of enzyme subtypes, including cysteine proteases, serine proteases and aspartic proteases. The contribution of cathepsins to invasion in human cancers is well documented, although the precise mechanisms by which cathepsins exert their effects are still not clear. In the present review, the role of cathepsin family members in cancer is discussed.

...