Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
2.
Am J Physiol Endocrinol Metab ; 325(3): E171-E179, 2023 09 01.
Article En | MEDLINE | ID: mdl-37378621

Accounting for 5%-15% of total daily energy expenditure, postprandial thermogenesis (PPT) refers to an acute increase in resting metabolic rate (RMR) in the hours after eating. This is largely explained by the energy costs of processing the macronutrients of a meal. Most individuals spend the majority of the day in the postprandial state, thus over one's lifetime even minor differences in PPT may possess true clinical significance. In contrast to RMR, research indicates that PPT may be reduced in the development of both prediabetes and type II diabetes (T2D). The present analysis of existing literature has found that this impairment may be exaggerated in hyperinsulinemic-euglycemic clamp studies compared with food and beverage consumption studies. Nonetheless, it is estimated that daily PPT following carbohydrate consumption alone is approximately 150 kJ lower among individuals with T2D. This estimate fails to consider protein intake, which is notably more thermogenic than carbohydrate intake (20%-30% vs. 5%-8%, respectively). Putatively, dysglycemic individuals may lack the insulin sensitivity required to divert glucose toward storage-a more energy-taxing pathway. Accordingly, the majority of findings has associated an impaired PPT with a reduced "obligatory" energy output (i.e., the energy costs associated with nutrient processing). More recently, it has been reported that "facultative" thermogenesis [e.g., the energy costs associated with sympathetic nervous system (SNS) stimulation] may also contribute to any impairment in PPT among individuals with prediabetes and T2D. Further longitudinal research is required to truly ascertain whether meaningful changes in PPT manifest in the prediabetic state, before the development of T2D.


Diabetes Mellitus, Type 2 , Glucose Intolerance , Prediabetic State , Humans , Energy Metabolism/physiology , Thermogenesis/physiology , Glucose , Blood Glucose , Insulin
3.
J Physiol ; 601(16): 3461-3480, 2023 08.
Article En | MEDLINE | ID: mdl-37269207

An understanding of the metabolic determinants of postexercise appetite regulation would facilitate development of adjunctive therapeutics to suppress compensatory eating behaviours and improve the efficacy of exercise as a weight-loss treatment. Metabolic responses to acute exercise are, however, dependent on pre-exercise nutritional practices, including carbohydrate intake. We therefore aimed to determine the interactive effects of dietary carbohydrate and exercise on plasma hormonal and metabolite responses and explore mediators of exercise-induced changes in appetite regulation across nutritional states. In this randomized crossover study, participants completed four 120 min visits: (i) control (water) followed by rest; (ii) control followed by exercise (30 min at ∼75% of maximal oxygen uptake); (iii) carbohydrate (75 g maltodextrin) followed by rest; and (iv) carbohydrate followed by exercise. An ad libitum meal was provided at the end of each 120 min visit, with blood sample collection and appetite assessment performed at predefined intervals. We found that dietary carbohydrate and exercise exerted independent effects on the hormones glucagon-like peptide 1 (carbohydrate, 16.8 pmol/L; exercise, 7.4 pmol/L), ghrelin (carbohydrate, -48.8 pmol/L; exercise: -22.7 pmol/L) and glucagon (carbohydrate, 9.8 ng/L; exercise, 8.2 ng/L) that were linked to the generation of distinct plasma 1 H nuclear magnetic resonance metabolic phenotypes. These metabolic responses were associated with changes in appetite and energy intake, and plasma acetate and succinate were subsequently identified as potential novel mediators of exercise-induced appetite and energy intake responses. In summary, dietary carbohydrate and exercise independently influence gastrointestinal hormones associated with appetite regulation. Future work is warranted to probe the mechanistic importance of plasma acetate and succinate in postexercise appetite regulation. KEY POINTS: Carbohydrate and exercise independently influence key appetite-regulating hormones. Temporal changes in postexercise appetite are linked to acetate, lactate and peptide YY. Postexercise energy intake is associated with glucagon-like peptide 1 and succinate levels.


Appetite Regulation , Dietary Carbohydrates , Male , Appetite/physiology , Appetite Regulation/physiology , Cross-Over Studies , Energy Intake/physiology , Exercise/physiology , Ghrelin/metabolism , Ghrelin/pharmacology , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Insulin/pharmacology , Peptide YY/metabolism , Peptide YY/pharmacology , Succinates/pharmacology , Humans
4.
Nutrients ; 14(2)2022 Jan 11.
Article En | MEDLINE | ID: mdl-35057470

Although causality is yet to be confirmed, a considerable volume of research has explored the relationships between cow milk consumption, type II diabetes, and cardiovascular disease. Contrastingly, it has not been comprehensively examined whether milk of non-bovine origin can provide cardiometabolic protection. This narrative review outlines the marked differences in macronutrient composition, particularly protein and lipid content, and discusses how whole milk product (and individual milk ingredients) from different species could impact cardiometabolic health. There is some data, although primarily from compositional analyses, animal studies, and acute clinical trials, that non-bovine milk (notably sheep and goat milk) could be a viable substitute to cow milk for the maintenance, or enhancement, of cardiometabolic health. With a high content of medium-chain triglycerides, conjugated linoleic acid, leucine, and essential minerals, sheep milk could assist in the prevention of metabolic-related disorders. Similarly, albeit with a lower content of such functional compounds relative to sheep milk, goat and buffalo milk could be plausible counterparts to cow milk. However, the evidence required to generate nutritional recommendations for 'non-bovine milk' is currently lacking. Longer-term randomised controlled trials must assess how the bioactive ingredients of different species' milks collectively influence biomarkers of, and subsequently incidence of, cardiometabolic health.


Diet, Healthy/methods , Dietary Fats/analysis , Dietary Proteins/analysis , Metabolic Syndrome/prevention & control , Milk/chemistry , Animals , Buffaloes , Cardiometabolic Risk Factors , Cardiovascular Diseases/prevention & control , Cattle , Diabetes Mellitus, Type 2/prevention & control , Female , Goats , Humans , Sheep
...