Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biofouling ; 37(2): 174-183, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33588649

RESUMEN

Enteropathogenic Escherichia coli E2346/69 (EPEC) has caused foodborne outbreaks worldwide and the bacterium forms antimicrobial-tolerant biofilms. The anti-biofilm formation of various components of essential oils extracted from selected medicinal plants were investigated and tested on EPEC and wild strains of E. coli. Oils extracted from the family Asteraceae and their major common constituents at 0.031 and 0.062% (V/v) were found to significantly inhibit biofilm formation without affecting the growth of planktonic cells. In addition, three plants belonging to this family (Artemisia herba alba, Artemisia campestris and Artemisia absinthium) played important roles in the antimicrobial activity. Interestingly, their essential oils reduced the ability of E. coli (the EPEC and K12 strains) to form a biofilm. The crystal violet reduction assay showed that the plant extracts tested reduced biofilm formation with the inhibition of bacterial attachment up to 45% for EPEC and 70% for E. coli K-12 after 24 h treatment at 0.62 mg ml-1, demonstrating that Artemisia oils had a high anti-biofilm activity on the bacteria tested. The results indicate that the locus of enterocyte effacement (LEE) acquired by horizontal transfer promotes the formation of the attaching and effacing (A/E) lesion and increases the capacity of the photogen strain (EPEC) to form a biofilm. The chemical composition of the volatile compounds was obtained by gas chromatography-mass spectrometry analysis, which showed that the essential oils consisted of thirty-four compounds. Chamazulene (39.21%), ß-pinene (32.07%), and α-thujone (29.39%) were the main constituents of the essential oils of A. herba alba, A. absinthium and A. campestris, respectively.


Asunto(s)
Artemisia , Escherichia coli Enteropatógena , Aceites Volátiles , Biopelículas , Aceites Volátiles/farmacología , Virulencia
2.
Commun Chem ; 3(1): 121, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36703359

RESUMEN

Escherichia coli glutamate decarboxylase (EcGadB), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, is highly specific for L-glutamate and was demonstrated to be effectively immobilised for the production of γ-aminobutyric acid (GABA), its decarboxylation product. Herein we show that EcGadB quantitatively decarboxylates the L-isomer of D,L-2-amino-4-(hydroxyphosphinyl)butyric acid (D,L-Glu-γ-PH), a phosphinic analogue of glutamate containing C-P-H bonds. This yields 3-aminopropylphosphinic acid (GABA-PH), a known GABAB receptor agonist and provides previously unknown D-Glu-γ-PH, allowing us to demonstrate that L-Glu-γ-PH, but not D-Glu-γ-PH, is responsible for D,L-Glu-γ-PH antibacterial activity. Furthermore, using GABase, a preparation of GABA-transaminase and succinic semialdehyde dehydrogenase, we show that GABA-PH is converted to 3-(hydroxyphosphinyl)propionic acid (Succinate-PH). Hence, PLP-dependent and NADP+-dependent enzymes are herein shown to recognise and metabolise phosphinic compounds, leaving unaffected the P-H bond. We therefore suggest that the phosphinic group is a bioisostere of the carboxyl group and the metabolic transformations of phosphinic compounds may offer a ground for prodrug design.

3.
Front Microbiol ; 9: 2869, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30498489

RESUMEN

Neutralophilic bacteria have developed several strategies to overcome the deleterious effects of acid stress. In particular, the amino acid-dependent systems are widespread, with their activities overlapping, covering a rather large pH range, from 6 to <2. Recent reports showed that an acid resistance (AR) system relying on the amino acid glutamine (AR2_Q), the most readily available amino acid in the free form, is operative in Escherichia coli, Lactobacillus reuteri, and some Brucella species. This system requires a glutaminase active at acidic pH and the antiporter GadC to import L-glutamine and export either glutamate (the glutamine deamination product) or GABA. The latter occurs when the deamination of glutamine to glutamate, via acid-glutaminase (YbaS/GlsA), is coupled to the decarboxylation of glutamate to GABA, via glutamate decarboxylase (GadB), a structural component of the glutamate-dependent AR (AR2) system, together with GadC. Taking into account that AR2_Q could be widespread in bacteria and that until now assays based on ammonium ion detection were typically employed, this work was undertaken with the aim to develop assays that allow a straightforward identification of the acid-glutaminase activity in permeabilized bacterial cells (qualitative assay) as well as a sensitive method (quantitative assay) to monitor in the pH range 2.5-4.0 the transport of the relevant amino acids in vivo. The qualitative assay is colorimetric, rapid and reliable and provides several additional information, such as co-occurrence of AR2 and AR2_Q in the same bacterial species and assessment of the growth conditions that support maximal expression of glutaminase at acidic pH. The quantitative assay is HPLC-based and allows to concomitantly measure the uptake of glutamine and the export of glutamate and/or GABA via GadC in vivo and depending on the external pH. Finally, an extensive bioinformatic genome analysis shows that the gene encoding the glutaminase involved in AR2_Q is often nearby or in operon arrangement with the genes coding for GadC and GadB. Overall, our results indicate that AR2_Q is likely to be of prominent importance in the AR of enteric bacteria and that it modulates the enzymatic as well as antiport activities depending on the imposed acidic stress.

4.
Front Microbiol ; 8: 2236, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29187839

RESUMEN

Neutralophilic bacteria have developed specific mechanisms to cope with the acid stress encountered in environments such as soil, fermented foods, and host compartments. In Escherichia coli, the glutamate decarboxylase (Gad)-dependent system is extremely efficient: it requires the concerted action of glutamate decarboxylase (GadA/GadB) and of the glutamate (Glu)/γ-aminobutyrate antiporter, GadC. Notably, this system is operative also in new strains/species of Brucella, among which Brucella microti, but not in the "classical" species, with the exception of marine mammals strains. Recently, the glutaminase-dependent system (named AR2_Q), relying on the deamination of glutamine (Gln) into Glu and on GadC activity, was described in E. coli. In Brucella genomes, a putative glutaminase (glsA)-coding gene is located downstream of the gadBC genes. We found that in B. microti these genes are expressed as a polycistronic transcript. Moreover, using a panel of Brucella genus-representative strains, we show that the AR2_Q system protects from extreme acid stress (pH ≤2.5), in the sole presence of Gln, only the Brucella species/strains predicted to have functional glsA and gadC. Indeed, mutagenesis approaches confirmed the involvement of glsA and gadC of B. microti in AR2_Q and that the acid-sensitive phenotype of B. abortus can be ascribed to a Ser248Leu substitution in GlsA, leading to loss of glutaminase activity. Furthermore, we found that the gene BMI_II339, of unknown function and downstream of the gadBC-glsA operon, positively affects Gad- and GlsA-dependent AR. Thus, we identified novel determinants that allow newly discovered and marine mammals Brucella strains to be better adapted to face hostile acidic environments. As for significance, this work may contribute to the understanding of the host preferences of Brucella species and opens the way to alternative diagnostic targets in epidemiological surveillance of brucellosis.

5.
AIMS Microbiol ; 3(1): 71-87, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31294150

RESUMEN

In order to survive the exposure to acid pH, Escherichia coli activates molecular circuits leading from acid tolerance to extreme acid resistance (AR). The activation of the different circuits involves several global and specific regulators affecting the expression of membrane, periplasmic and cytosolic proteins acting at different levels to dampen the harmful consequences of the uncontrolled entry of protons intracellularly. Many genes coding for the structural components of the AR circuits (protecting from pH ≤ 2.5) and their specific transcriptional regulators cluster in a genomic region named AFI (acid fitness island) and respond in the same way to global regulators (such as RpoS and H-NS) as well as to anaerobiosis, alkaline, cold and respiratory stresses, in addition to the acid stress. Notably some genes coding for structural components of AR, though similarly regulated, are non-AFI localised. Amongst these the gadBC operon, coding for the major structural components of the glutamate-based AR system, and the ybaS gene, coding for a glutaminase required for the glutamine-based AR system. The yhiM gene, a non-AFI gene, appears to belong to this group. We mapped the transcription start of the 1.1 kb monocistronic yhiM transcript: it is an adenine residue located 22 nt upstream a GTG start codon. By real-time PCR we show that GadE and GadX equally affect the expression of yhiM under oxidative growth conditions. While YhiM is partially involved in the RpoS-dependent AR, we failed to detect a significant involvement in the glutamate- or glutamine-dependent AR at pH ≤ 2.5. However, when grown in EG at pH 5.0, the yhiM mutant displays impaired GABA export, whereas when YhiM is overexpressed, an increases of GABA export in EG medium in the pH range 2.5-5.5 is observed. Our data suggest that YhiM is a GABA transporter with a physiological role more relevant at mildly acidic pH, but not a key component of AR at pH < 2.5.

6.
J Enzyme Inhib Med Chem ; 31(2): 295-301, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25807299

RESUMEN

The γ-aminobutyrate (GABA)-degradative enzyme GABA aminotransferase (GABA-AT) is regarded as an attractive target to control GABA levels in the central nervous system: this has important implications in the treatment of several neurological disorders and drug dependencies. We have investigated the ability of newly synthesized compounds to act as GABA-AT inhibitors. These compounds have a unique bicyclic structure: the carbocyclic ring bears the GABA skeleton, while the fused 3-Br-isoxazoline ring contains an electrophilic warhead susceptible of nucleophilic attack by an active site residue of the target enzyme. Out of the four compounds tested, only the one named (+)-3 was found to significantly inhibit mammalian GABA-AT in vitro. Docking studies, performed on the available structures of GABA-AT, support the experimental findings: out of the four tested compounds, only (+)-3 suitably orients the electrophilic 3-Br-isoxazoline warhead towards the active site nucleophilic residue Lys329, thereby explaining the irreversible inhibition of GABA-AT observed experimentally.


Asunto(s)
4-Aminobutirato Transaminasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , 4-Aminobutirato Transaminasa/química , 4-Aminobutirato Transaminasa/metabolismo , Aminoácidos/química , Aminoácidos/farmacología , Animales , Dominio Catalítico , Técnicas de Química Sintética , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/síntesis química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
7.
FEBS Open Bio ; 5: 209-18, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25853037

RESUMEN

In orally acquired bacteria, the ability to counteract extreme acid stress (pH â©½ 2.5) ensures survival during transit through the animal host stomach. In several neutralophilic bacteria, the glutamate-dependent acid resistance system (GDAR) is the most efficient molecular system in conferring protection from acid stress. In Escherichia coli its structural components are either of the two glutamate decarboxylase isoforms (GadA, GadB) and the antiporter, GadC, which imports glutamate and exports γ-aminobutyrate, the decarboxylation product. The system works by consuming protons intracellularly, as part of the decarboxylation reaction, and exporting positive charges via the antiporter. Herein, biochemical and spectroscopic properties of GadB from Brucella microti (BmGadB), a Brucella species which possesses GDAR, are described. B. microti belongs to a group of lately described and atypical brucellae that possess functional gadB and gadC genes, unlike the most well-known "classical" Brucella species, which include important human pathogens. BmGadB is hexameric at acidic pH. The pH-dependent spectroscopic properties and activity profile, combined with in silico sequence comparison with E. coli GadB (EcGadB), suggest that BmGadB has the necessary structural requirements for the binding of activating chloride ions at acidic pH and for the closure of its active site at neutral pH. On the contrary, cellular localization analysis, corroborated by sequence inspection, suggests that BmGadB does not undergo membrane recruitment at acidic pH, which was observed in EcGadB. The comparison of GadB from evolutionary distant microorganisms suggests that for this enzyme to be functional in GDAR some structural features must be preserved.

8.
Proc Natl Acad Sci U S A ; 111(25): E2524-9, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24927554

RESUMEN

The human neuroendocrine enzyme glutamate decarboxylase (GAD) catalyses the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) using pyridoxal 5'-phosphate as a cofactor. GAD exists as two isoforms named according to their respective molecular weights: GAD65 and GAD67. Although cytosolic GAD67 is typically saturated with the cofactor (holoGAD67) and constitutively active to produce basal levels of GABA, the membrane-associated GAD65 exists mainly as the inactive apo form. GAD65, but not GAD67, is a prevalent autoantigen, with autoantibodies to GAD65 being detected at high frequency in patients with autoimmune (type 1) diabetes and certain other autoimmune disorders. The significance of GAD65 autoinactivation into the apo form for regulation of neurotransmitter levels and autoantibody reactivity is not understood. We have used computational and experimental approaches to decipher the nature of the holo → apo conversion in GAD65 and thus, its mechanism of autoinactivation. Molecular dynamics simulations of GAD65 reveal coupling between the C-terminal domain, catalytic loop, and pyridoxal 5'-phosphate-binding domain that drives structural rearrangement, dimer opening, and autoinactivation, consistent with limited proteolysis fragmentation patterns. Together with small-angle X-ray scattering and fluorescence spectroscopy data, our findings are consistent with apoGAD65 existing as an ensemble of conformations. Antibody-binding kinetics suggest a mechanism of mutually induced conformational changes, implicating the flexibility of apoGAD65 in its autoantigenicity. Although conformational diversity may provide a mechanism for cofactor-controlled regulation of neurotransmitter biosynthesis, it may also come at a cost of insufficient development of immune self-tolerance that favors the production of GAD65 autoantibodies.


Asunto(s)
Autoinmunidad , Glutamato Descarboxilasa , Homeostasis/inmunología , Simulación de Dinámica Molecular , Neurotransmisores , Ácido gamma-Aminobutírico , Autoanticuerpos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Glutamato Descarboxilasa/química , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/inmunología , Humanos , Neurotransmisores/química , Neurotransmisores/genética , Neurotransmisores/inmunología , Multimerización de Proteína , Relación Estructura-Actividad , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/inmunología
9.
Mol Microbiol ; 86(4): 770-86, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22995042

RESUMEN

For successful colonization of the mammalian host, orally acquired bacteria must overcome the extreme acidic stress (pH < 2.5) encountered during transit through the host stomach. The glutamate-dependent acid resistance (GDAR) system is by far the most potent acid resistance system in commensal and pathogenic Escherichia coli, Shigella flexneri, Listeria monocytogenes and Lactococcus lactis. GDAR requires the activity of glutamate decarboxylase (GadB), an intracellular PLP-dependent enzyme which performs a proton-consuming decarboxylation reaction, and of the cognate antiporter (GadC), which performs the glutamatein /γ-aminobutyrateout (GABA) electrogenic antiport. Herein we review recent findings on the structural determinants responsible for pH-dependent intracellular activation of E. coli GadB and GadC. A survey of genomes of bacteria (pathogenic and non-pathogenic), having in common the ability to colonize or to transit through the host gut, shows that the gadB and gadC genes frequently lie next or near each other. This gene arrangement is likely to be important to ensure timely co-regulation of the decarboxylase and the antiporter. Besides the involvement in acid resistance, GABA production and release were found to occur at very high levels in lactic acid bacteria originally isolated from traditionally fermented foods, supporting the evidence that GABA-enriched foods possess health-promoting properties.


Asunto(s)
Ácidos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Glutamato Descarboxilasa/metabolismo , Proteínas de la Membrana/metabolismo , Escherichia coli/metabolismo , Escherichia coli/fisiología , Orden Génico , Modelos Biológicos , Modelos Moleculares , Operón , Conformación Proteica , Homología de Secuencia de Aminoácido , Estrés Fisiológico , Ácido gamma-Aminobutírico/metabolismo
10.
J Biol Chem ; 284(46): 31587-96, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19797049

RESUMEN

Glutamate decarboxylase (GadB) from Escherichia coli is a hexameric, pyridoxal 5'-phosphate-dependent enzyme catalyzing CO(2) release from the alpha-carboxyl group of L-glutamate to yield gamma-aminobutyrate. GadB exhibits an acidic pH optimum and undergoes a spectroscopically detectable and strongly cooperative pH-dependent conformational change involving at least six protons. Crystallographic studies showed that at mildly alkaline pH GadB is inactive because all active sites are locked by the C termini and that the 340 nm absorbance is an aldamine formed by the pyridoxal 5'-phosphate-Lys(276) Schiff base with the distal nitrogen of His(465), the penultimate residue in the GadB sequence. Herein we show that His(465) has a massive influence on the equilibrium between active and inactive forms, the former being favored when this residue is absent. His(465) contributes with n approximately 2.5 to the overall cooperativity of the system. The residual cooperativity (n approximately 3) is associated with the conformational changes still occurring at the N-terminal ends regardless of the mutation. His(465), dispensable for the cooperativity that affects enzyme activity, is essential to include the conformational change of the N termini into the cooperativity of the whole system. In the absence of His(465), a 330-nm absorbing species appears, with fluorescence emission spectra more complex than model compounds and consisting of two maxima at 390 and 510 nm. Because His(465) mutants are active at pH well above 5.7, they appear to be suitable for biotechnological applications.


Asunto(s)
Escherichia coli/enzimología , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Histidina/genética , Mutación/genética , Aminas/química , Aminas/metabolismo , Sitios de Unión , Dicroismo Circular , Biología Computacional , Escherichia coli/genética , Glutamato Descarboxilasa/química , Ácido Glutámico , Histidina/química , Concentración de Iones de Hidrógeno , Cinética , Mutagénesis Sitio-Dirigida , Conformación Proteica
11.
EMBO J ; 25(11): 2643-51, 2006 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-16675957

RESUMEN

Escherichia coli and other enterobacteria exploit the H+ -consuming reaction catalysed by glutamate decarboxylase to survive the stomach acidity before reaching the intestine. Here we show that chloride, extremely abundant in gastric secretions, is an allosteric activator producing a 10-fold increase in the decarboxylase activity at pH 5.6. Cooperativity and sensitivity to chloride were lost when the N-terminal 14 residues, involved in the formation of two triple-helix bundles, were deleted by mutagenesis. X-ray structures, obtained in the presence of the substrate analogue acetate, identified halide-binding sites at the base of each N-terminal helix, showed how halide binding is responsible for bundle stability and demonstrated that the interconversion between active and inactive forms of the enzyme is a stepwise process. We also discovered an entirely novel structure of the cofactor pyridoxal 5'-phosphate (aldamine) to be responsible for the reversibly inactivated enzyme. Our results link the entry of chloride ions, via the H+/Cl- exchange activities of ClC-ec1, to the trigger of the acid stress response in the cell when the intracellular proton concentration has not yet reached fatal values.


Asunto(s)
Ácidos/química , Cloruros/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glutamato Descarboxilasa/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/metabolismo , Regulación Alostérica , Antiportadores/genética , Antiportadores/metabolismo , Cristalografía por Rayos X , Activación Enzimática , Estabilidad de Enzimas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glutamato Descarboxilasa/antagonistas & inhibidores , Glutamato Descarboxilasa/química , Glutamato Descarboxilasa/genética , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...