Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 72(11): 3773-3786, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37635172

RESUMEN

Epithelial ovarian cancer is the most lethal of gynecological cancers. The therapeutic efficacy of chimeric antigen receptor (CAR) T cell directed against single antigens is limited by the heterogeneous target antigen expression in epithelial ovarian tumors. To overcome this limitation, we describe an engineered cell with both dual targeting and orthogonal cytotoxic modalities directed against two tumor antigens that are highly expressed on ovarian cancer cells: cell surface Muc16 and intracellular WT1. Muc16-specific CAR T cells (4H11) were engineered to secrete a bispecific T cell engager (BiTE) constructed from a TCR mimic antibody (ESK1) reactive with the WT1-derived epitope RMFPNAPYL (RMF) presented by HLA-A2 molecules. The secreted ESK1 BiTE recruited and redirected other T cells to WT1 on the tumor cells. We show that ESK1 BiTE-secreting 4H11 CAR T cells exhibited enhanced anticancer activity against cancer cells with low Muc16 expression, compared to 4H11 CAR T cells alone, both in vitro and in mouse tumor models. Dual orthogonal cytotoxic modalities with different specificities targeting both surface and intracellular tumor-associated antigens present a promising strategy to overcome resistance to CAR T cell therapy in epithelial ovarian cancer and other cancers.


Asunto(s)
Neoplasias Ováricas , Receptores Quiméricos de Antígenos , Humanos , Ratones , Femenino , Animales , Carcinoma Epitelial de Ovario/terapia , Neoplasias Ováricas/terapia , Antígenos de Neoplasias , Linfocitos T , Proteínas WT1
2.
Res Sq ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214945

RESUMEN

Epithelial ovarian cancer is the most lethal of gynecological cancers. The therapeutic efficacy of chimeric antigen receptor (CAR) T cell directed against single antigens is limited by the heterogeneous target antigen expression in epithelial ovarian tumors. To overcome this limitation, we describe an engineered cell with both dual targeting and orthogonal cytotoxic modalities directed against two tumor antigens that are highly expressed on ovarian cancer cells: cell surface Muc16 and intracellular WT1. Muc16-specific CAR-T cells (4H11) were engineered to secrete a bispecific T cell engager (BiTE) constructed from a TCR mimic antibody (ESK1) reactive with the WT1-derived epitope RMFPNAPYL (RMF) presented by HLA-A2 molecules. The secreted ESK1 BiTE recruited and redirected other T cells to WT1 on the tumor cells. We show that ESK1 BiTE-secreting 4H11 CAR-T cells exhibited enhanced anticancer activity against cancer cells with low Muc16 expression, compared to 4H11 CAR-T cells alone, both in vitro and in mouse tumor models. Dual orthogonal cytotoxic modalities with different specificities targeting both surface and intracellular tumor-associated antigens present a promising strategy to overcome resistance to CAR-T cell therapy in epithelial ovarian cancer and other cancers.

3.
Nat Biotechnol ; 41(5): 686-697, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36624149

RESUMEN

Cytosine base editors (CBEs) enable programmable genomic C·G-to-T·A transition mutations and typically comprise a modified CRISPR-Cas enzyme, a naturally occurring cytidine deaminase, and an inhibitor of uracil repair. Previous studies have shown that CBEs utilizing naturally occurring cytidine deaminases may cause unguided, genome-wide cytosine deamination. While improved CBEs that decrease stochastic genome-wide off-targets have subsequently been reported, these editors can suffer from suboptimal on-target performance. Here, we report the generation and characterization of CBEs that use engineered variants of TadA (CBE-T) that enable high on-target C·G to T·A across a sequence-diverse set of genomic loci, demonstrate robust activity in primary cells and cause no detectable elevation in genome-wide mutation. Additionally, we report cytosine and adenine base editors (CABEs) catalyzing both A-to-I and C-to-U editing (CABE-Ts). Together with ABEs, CBE-Ts and CABE-Ts enable the programmable installation of all transition mutations using laboratory-evolved TadA variants with improved properties relative to previously reported CBEs.


Asunto(s)
Citosina , Edición Génica , Mutación/genética , Citidina Desaminasa/genética , Genoma , Sistemas CRISPR-Cas/genética
4.
Blood ; 140(8): 861-874, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35427421

RESUMEN

Target identification for chimeric antigen receptor (CAR) T-cell therapies remains challenging due to the limited repertoire of tumor-specific surface proteins. Intracellular proteins presented in the context of cell surface HLA provide a wide pool of potential antigens targetable through T-cell receptor mimic antibodies. Mass spectrometry (MS) of HLA ligands from 8 hematologic and nonhematologic cancer cell lines identified a shared, non-immunogenic, HLA-A*02-restricted ligand (ALNEQIARL) derived from the kinetochore-associated NDC80 gene. CAR T cells directed against the ALNEQIARL:HLA-A*02 complex exhibited high sensitivity and specificity for recognition and killing of multiple cancer types, especially those of hematologic origin, and were efficacious in mouse models against a human leukemia and a solid tumor. In contrast, no toxicities toward resting or activated healthy leukocytes as well as hematopoietic stem cells were observed. This shows how MS can inform the design of broadly reactive therapeutic T-cell receptor mimic CAR T-cell therapies that can target multiple cancer types currently not druggable by small molecules, conventional CAR T cells, T cells, or antibodies.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Animales , Anticuerpos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Antígenos HLA-A , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/terapia , Humanos , Inmunoterapia Adoptiva/métodos , Ratones , Receptores de Antígenos de Linfocitos T , Linfocitos T
5.
ACS Chem Biol ; 16(7): 1184-1190, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34224243

RESUMEN

The efficiency with which polycationic peptides penetrate the cytosol depends on the number and overall patterning of arginine residues. While general trends and unusually penetrant patterns of arginine residues have been discovered, prior work has not effectively leveraged high-throughput screens to measure cytosolic penetration rather than total cell uptake. In this work, we adapted the chloroalkane penetration assay, which exclusively measures cytosolic penetration, to screen peptide libraries in a high-throughput, quantitative, and automation-ready manner. We demonstrate the usefulness of the screening platform by efficiently exploring how the number, patterning, and stereochemistry of arginine residues affect the cytosolic penetration of a model 10-residue peptide.


Asunto(s)
Citosol/metabolismo , Oligopéptidos/metabolismo , Bioensayo , Células HeLa , Humanos , Estructura Molecular , Oligopéptidos/química , Biblioteca de Péptidos , Relación Estructura-Actividad
6.
Mol Ther ; 29(12): 3398-3409, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34217891

RESUMEN

Cellular therapies are engineered using foreign and synthetic protein sequences, such as chimeric antigen receptors (CARs). The frequently observed humoral responses to CAR T cells result in rapid clearance, especially after re-infusions. There is an unmet need to protect engineered cells from host-versus-graft rejection, particularly for the advancement of allogeneic cell therapies. Here, utilizing the immunoglobulin G (IgG) protease "IdeS," we programmed CAR T cells to defeat humoral immune attacks. IdeS cleavage of host IgG averted Fc-dependent phagocytosis and lysis, and the residual F(ab')2 fragments remained on the surface, providing cells with an inert shield from additional IgG deposition. "Shield" CAR T cells efficiently cleaved cytotoxic IgG, including anti-CAR antibodies, detected in patient samples and provided effective anti-tumor activity in the presence of anti-cell IgG in vivo. This technology may be useful for repeated human infusions of engineered cells, more complex engineered cells, and expanding widespread use of "off-the-shelf" allogeneic cellular therapies.


Asunto(s)
Inmunoglobulina G , Receptores Quiméricos de Antígenos , Humanos , Fagocitosis , Receptores Quiméricos de Antígenos/metabolismo
7.
Cancers (Basel) ; 12(8)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764348

RESUMEN

The recent emergence of engineered cellular therapies, such as Chimeric antigen receptor (CAR) CAR T and T cell receptor (TCR) engineered T cells, has shown great promise in the treatment of various cancers. These agents aggregate and expand exponentially at the tumor site, resulting in potent immune activation and tumor clearance. Moreover, the ability to elaborate these cells with therapeutic agents, such as antibodies, enzymes, and immunostimulatory molecules, presents an unprecedented opportunity to specifically modulate the tumor microenvironment through cell-mediated drug delivery. This unique pharmacology, combined with significant advances in synthetic biology and cell engineering, has established a new paradigm for cells as vectors for drug delivery. Targeted cellular micropharmacies (TCMs) are a revolutionary new class of living drugs, which we envision will play an important role in cancer medicine and beyond. Here, we review important advances and considerations underway in developing this promising advancement in biological therapeutics.

8.
J Org Chem ; 85(12): 8253-8260, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32452203

RESUMEN

We describe the synthesis of Xyzidepsin, a depsipeptidic analogue of HDAC inhibitor Romidepsin (FK228), using a solid-phase strategy. Our latent thioester solid-phase linker was synthesized in 92% yield (three steps). Chemoselective conditions unmasked the thioester functionality and cyclized the depsipeptidic macrocycle. An IC50 value of 0.50 µM ± 0.05 was obtained for U937 cells. This synthetic route, well-suited to SAR, represents a generalizable route toward all manner of analogues, including structures with acidic and basic amino acids.


Asunto(s)
Depsipéptidos , Inhibidores de Histona Desacetilasas , Depsipéptidos/farmacología , Inhibidores de Histona Desacetilasas/farmacología
9.
J Am Chem Soc ; 140(36): 11360-11369, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30118219

RESUMEN

Biotherapeutics are a promising class of molecules in drug discovery, but they are often limited to extracellular targets due to their poor cell penetration. High-throughput cell penetration assays are required for the optimization of biotherapeutics for enhanced cell penetration. We developed a HaloTag-based assay called the chloroalkane penetration assay (CAPA), which is quantitative, high-throughput, and compartment-specific. We demonstrate the ability of CAPA to profile extent of cytosolic penetration with respect to concentration, presence of serum, temperature, and time. We also used CAPA to investigate structure-penetration relationships for bioactive stapled peptides and peptides fused to cell-penetrating sequences. CAPA is not only limited to measuring cytosolic penetration. Using a cell line where HaloTag is localized to the nucleus, we show quantitative measurement of nuclear penetration. Going forward, CAPA will be a valuable method for measuring and optimizing the cell penetration of biotherapeutics.


Asunto(s)
Péptidos de Penetración Celular/análisis , Hidrocarburos Clorados/química , Células HeLa , Humanos , Estructura Molecular
10.
Angew Chem Int Ed Engl ; 57(37): 11868-11881, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-29740917

RESUMEN

Biomolecules such as antibodies, proteins, and peptides are important tools for chemical biology and leads for drug development. They have been used to inhibit a variety of extracellular proteins, but accessing intracellular proteins has been much more challenging. In this review, we discuss diverse chemical approaches that have yielded cell-penetrant peptides and identify three distinct strategies: masking backbone amides, guanidinium group patterning, and amphipathic patterning. We summarize a growing number of large data sets, which are starting to reveal more specific design guidelines for each strategy. We also discuss advantages and disadvantages of current methods for quantifying cell penetration. Finally, we provide an overview of best-odds approaches for applying these new methods and design principles to optimize cytosolic penetration for a given bioactive peptide.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Amidas/química , Péptidos de Penetración Celular/química , Guanidina/química , Humanos , Microscopía Fluorescente , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Conformación Proteica en Hélice alfa , Electricidad Estática , Propiedades de Superficie
11.
J Am Chem Soc ; 139(23): 7792-7802, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28414223

RESUMEN

Autophagy is an essential pathway by which cellular and foreign material are degraded and recycled in eukaryotic cells. Induction of autophagy is a promising approach for treating diverse human diseases, including neurodegenerative disorders and infectious diseases. Here, we report the use of a diversity-oriented stapling approach to produce autophagy-inducing peptides that are intrinsically cell-penetrant. These peptides induce autophagy at micromolar concentrations in vitro, have aggregate-clearing activity in a cellular model of Huntington's disease, and induce autophagy in vivo. Unexpectedly, the solution structure of the most potent stapled peptide, DD5-o, revealed an α-helical conformation in methanol, stabilized by an unusual (i,i+3) staple which cross-links two d-amino acids. We also developed a novel assay for cell penetration that reports exclusively on cytosolic access and used it to quantitatively compare the cell penetration of DD5-o and other autophagy-inducing peptides. These new, cell-penetrant autophagy inducers and their molecular details are critical advances in the effort to understand and control autophagy. More broadly, diversity-oriented stapling may provide a promising alternative to polycationic sequences as a means for rendering peptides more cell-penetrant.


Asunto(s)
Autofagia/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Péptidos/farmacología , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Modelos Moleculares , Estructura Molecular , Péptidos/síntesis química , Péptidos/química , Relación Estructura-Actividad
12.
Bioorg Med Chem ; 22(22): 6387-91, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25438762

RESUMEN

While peptides are promising as probes and therapeutics, targeting intracellular proteins will require greater understanding of highly structured, cell-internalized scaffolds. We recently reported BC1, an 11-residue bicyclic peptide that inhibits the Src homology 2 (SH2) domain of growth factor receptor-bound protein 2 (Grb2). In this work, we describe the unique structural and cell uptake properties of BC1 and similar cyclic and bicyclic scaffolds. These constrained scaffolds are taken up by mammalian cells despite their net neutral or negative charges, while unconstrained analogs are not. The mechanism of uptake is shown to be energy-dependent and endocytic, but distinct from that of Tat. The solution structure of BC1 was investigated by NMR and MD simulations, which revealed discrete water-binding sites on BC1 that reduce exposure of backbone amides to bulk water. This represents an original and potentially general strategy for promoting cell uptake.


Asunto(s)
Péptidos Cíclicos/metabolismo , Fosfotirosina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Compuestos de Boro/química , Línea Celular Tumoral , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Microscopía Fluorescente , Simulación de Dinámica Molecular , Péptidos Cíclicos/química , Fosfotirosina/química , Estructura Terciaria de Proteína , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA