Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Dis Model Mech ; 16(6)2023 06 01.
Article En | MEDLINE | ID: mdl-37158111

This study exploited a novel patient-derived xenograft (PDX) of desmoplastic small round cell tumor (DSRCT), which reproduces histomorphological and molecular characteristics of the clinical tumor, to assess the activity of cytotoxic and targeted anticancer agents. Antitumor effect was moderate for doxorubicin, pazopanib and larotrectenib [maximum tumor volume inhibition (max TVI), 55-66%], while trabectedin had higher activity (max TVI, 82%). Vinorelbine, irinotecan and eribulin achieved nearly complete tumor growth inhibition (max TVI, 96-98%), although tumors regrew after the end of treatment. The combination of irinotecan with either eribulin or trabectedin resulted in complete responses, which were maintained until the end of the experiment for irinotecan plus trabectedin. Irinotecan-based combinations nearly abrogated the expression of proteins of the G2/M checkpoint, preventing cell entrance in mitosis, and induced apoptotic and necroptotic cell death. Consistently, irinotecan plus trabectedin resulted in reprogramming of DSCRT transcriptome, with downregulation of E2F targets, G2/M checkpoint and mitotic spindle gene sets. This study emphasizes the importance of patient-derived preclinical models to explore new treatments for DSRCT and fosters clinical investigation into the activity of irinotecan plus trabectedin.


Antineoplastic Agents , Desmoplastic Small Round Cell Tumor , Humans , Trabectedin/therapeutic use , Trabectedin/pharmacology , Irinotecan/pharmacology , Irinotecan/therapeutic use , Desmoplastic Small Round Cell Tumor/drug therapy , Desmoplastic Small Round Cell Tumor/pathology , Heterografts , Antineoplastic Agents/therapeutic use
2.
Front Cell Dev Biol ; 10: 909097, 2022.
Article En | MEDLINE | ID: mdl-35784469

Aside serving as host gene for miR-205, MIR205HG transcribes for a chromatin-associated long noncoding RNA (lncRNA) able to restrain the differentiation of prostate basal cells, thus being reannotated as LEADR (Long Epithelial Alu-interacting Differentiation-related RNA). We previously showed the presence of Alu sequences in the promoters of genes modulated upon MIR205HG/LEADR manipulation. Notably, an Alu element also spans the first and second exons of MIR205HG/LEADR, suggesting its possible involvement in target selection/binding. Here, we performed ChIRP-seq to map MIR205HG/LEADR chromatin occupancy at genome-wide level in prostate basal cells. Our results confirmed preferential binding to regions proximal to gene transcription start site (TSS). Moreover, enrichment of triplex-forming sequences was found upstream of MIR205HG/LEADR-bound genes, peaking at -1,500/-500 bp from TSS. Triplexes formed with one or two putative DNA binding sites within MIR205HG/LEADR sequence, located just upstream of the Alu element. Notably, triplex-forming regions of bound genes were themselves enriched in Alu elements. These data suggest, from one side, that triplex formation may be the prevalent mechanism by which MIR205HG/LEADR selects and physically interacts with target DNA, from the other that direct or protein-mediated Alu (RNA)/Alu (DNA) interaction may represent a further functional requirement. We also found that triplex-forming regions were enriched in specific histone modifications, including H3K4me1 in the absence of H3K27ac, H3K4me3 and H3K27me3, indicating that in prostate basal cells MIR205HG/LEADR may preferentially bind to primed proximal regulatory elements. This may underscore the need for basal cells to keep MIR205HG/LEADR target genes repressed but, at the same time, responsive to differentiation cues.

3.
Cancers (Basel) ; 14(11)2022 May 25.
Article En | MEDLINE | ID: mdl-35681604

BACKGROUND: Well-differentiated (WD)/dedifferentiated (DD) liposarcoma (LPS) accounts for ~60% of retroperitoneal sarcomas. WDLPS and DDLPS divergently evolve from a common precursor and are both marked by the amplification of the 12q13-q15 region, leading to the abnormal expression of MDM2, CDK4, and HMGA2 genes. DDLPS is a non-lipogenic disease associated with aggressive clinical behavior. Patients have limited therapeutic options, especially for advanced disease, and their outcome remains largely unsatisfactory. This evidence underlines the need for identifying and validating DDLPS-specific actionable targets to design novel biology-driven therapies. METHODS: Following gene expression profiling of DDLPS clinical specimens, we observed the up-regulation of "telomere maintenance" (TMM) pathways in paired DD and WD components of DDLPS. Considering the relevance of TMM for LPS onset and progression, the activity of a telomeric G-quadruplex binder (RHPS4) was assessed in DDLPS patient-derived cell lines. RESULTS: Equitoxic concentrations of RHPS4 in DDLPS cells altered telomeric c-circle levels, induced DNA damage, and resulted in the accumulation of γ-H2AX-stained micronuclei. This evidence was paralleled by an RHPS4-mediated reduction of in vitro cell migration and induction of apoptosis/autophagy. CONCLUSIONS: Our findings support telomere as an intriguing therapeutic target in DDLPS and suggest G-quadruplex binders as innovative therapeutic agents.

4.
Cancer Gene Ther ; 29(10): 1394-1404, 2022 10.
Article En | MEDLINE | ID: mdl-35352023

Diffuse malignant peritoneal mesothelioma (DMPM) is a rare and rapidly lethal tumor, poorly responsive to conventional treatments. In this regards, the identification of molecular alterations underlying DMPM onset and progression might be exploited to develop novel therapeutic strategies. Here, we focused on miR-550a-3p, which we found downregulated in 45 DMPM clinical samples compared to normal tissues and whose expression levels were associated with patient outcome. Through a gain-of-function approach using miRNA mimics in 3 DMPM cell lines, we demonstrated the tumor-suppressive role of miR-550a-3p. Specifically, miRNA ectopic expression impaired cell proliferation and invasiveness, enhanced the apoptotic response, and reduced the growth of DMPM xenografts in mice. Antiproliferative and proapoptotic effects were also observed in prostate and ovarian cancer cell lines following miR-550a-3p ectopic expression. miR-550a-3p effects were mediated, at least in part, by the direct inhibition of HSP90AA1 and the consequent downregulation of its target proteins, the levels of which were rescued upon disruption of miRNA-HSP90AA1 mRNA pairing, partially abrogating miR-550a-3p-induced cellular effects. Our results show that miR-550a-3p reconstitution affects several tumor traits, thus suggesting this approach as a potential novel therapeutic strategy for DMPM.


Lung Neoplasms , Mesothelioma, Malignant , MicroRNAs , Peritoneal Neoplasms , Animals , Biomarkers , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/pharmacology , Humans , Lung Neoplasms/genetics , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/pathology , Prognosis , RNA, Messenger
5.
Pharmaceuticals (Basel) ; 14(6)2021 May 29.
Article En | MEDLINE | ID: mdl-34072442

Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Here, we pursued a combinatorial therapeutic approach to enhance the activity of selinexor, the first-in-class XPO1 inhibitor, by miR-34a ectopic expression in human TNBC experimental models. Anti-proliferative activity induced by selinexor and miR-34a expression, singly and in combination, was evaluated by MTS assay and cell counting. The effect of treatments on survivin and apoptosis-related proteins was assessed by western blotting and ELISA. The antitumor and toxic effects of individual and combined treatments were evaluated on TNBC orthotopic xenografts in SCID mice. Selinexor consistently showed anti-proliferative activity, although to a variable extent, in the different TNBC cell lines and caused the impairment of survivin expression and intracellular distribution, accompanied by apoptosis induction. Consistent with in vitro data, the XPO1 inhibitor variably affected the growth of TNBC orthotopic xenografts. miR-34a cooperated with selinexor to reduce survivin expression and improved its anti-proliferative activity in TNBC cells. Most importantly, miR-34a expression markedly enhanced selinexor antitumor activity in the less sensitive TNBC xenograft model, in absence of toxicity. Our data form a solid foundation for promoting the use of a miR-34a-based approach to improve the therapeutic efficacy of selinexor in TNBC patients.

6.
J Exp Clin Cancer Res ; 40(1): 83, 2021 Mar 01.
Article En | MEDLINE | ID: mdl-33648535

BACKGROUND: Dedifferentiated liposarcoma (DDLPS), a tumor that lacks effective treatment strategies and is associated with poor outcomes, expresses amplified MDM2 in the presence of wild-type p53. MDM2 ubiquitination of p53 facilitates its XPO1-mediated nuclear export, thus limiting p53 tumor suppressor functions. Consequently, nuclear export is a rational target in DDLPS. We directly compared the antitumor activity of the first-in class XPO1 inhibitor selinexor and doxorubicin, the standard front-line therapy in sarcomas, in DDLPS patient-derived xenografts (PDXs) and primary cell lines. METHODS: Drug activity was assessed in three PDXs (and two corresponding cell lines) established from the dedifferentiated component of primary untreated retroperitoneal DDLPS with myogenic (N = 2) and rhabdomyoblastic (N = 1) differentiation from patients who underwent surgery. These models were marked by amplification of MDM2, CDK4 and HMGA2 genes. RESULTS: Selinexor was moderately active in the three PDXs but achieved greater tumor response compared to doxorubicin (maximum tumor volume inhibition: 46-80 % vs. 37-60 %). The PDX harboring rhabdomyoblastic dedifferentiation showed the highest sensitivity to both agents. PDX response to selinexor and doxorubicin was not associated with the extent of MDM2 and CDK4 gene amplification. Interestingly, the most chemosensitive PDX model showed the lowest extent of HMGA2 amplification. Selinexor was also more efficient than doxorubicinin in inducing an apoptotic response in PDXs and cell lines. Consistently, an increased nuclear accumulation of p53 was seen in all selinexor-treated models. In addition, a time-dependent decrease of survivin expression, with an almost complete abrogation of the cytoplasmic anti-apoptotic pool of this protein, was observed as a consequence of the decreased acetylation/activation of STAT3 and the increased ubiquitination of nuclear survivin. CONCLUSIONS: Selinexor showed a moderate antitumor activity in three DDLPS PDXs, which was, however, consistently higher than doxorubicin across all different models regardless the extent of MDM2 amplification and the histological differentiation. The depletion of survivin protein seems to significantly contribute to the induction of apoptosis through which selinexor exerts its antitumor activity.


Doxorubicin/pharmacology , Hydrazines/pharmacology , Liposarcoma/drug therapy , Survivin/metabolism , Triazoles/pharmacology , Tumor Suppressor Protein p53/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Cell Dedifferentiation/physiology , Cell Nucleus/metabolism , Down-Regulation , Humans , Liposarcoma/diagnostic imaging , Liposarcoma/metabolism , Liposarcoma/pathology , Male , Mice , Mice, Nude , Random Allocation , Xenograft Model Antitumor Assays
7.
Cell Calcium ; 93: 102309, 2021 01.
Article En | MEDLINE | ID: mdl-33181424

The oxysterol-binding protein-related proteins (ORPs) have emerged as orchestrators of phosphatidylinositol-4,5-bisphosphate (PIP2) and cholesterol trafficking to the plasma membrane (PM). In this scenario, recent studies raised the prospect of ORPs cooperative behavior in sustaining leukemia stem cells (LSCs) survival by remotely enhancing ER-mitochondria Ca2+ communication. At the apex of the signaling cascade, the aberrantly upregulated LSC-ORP4L fosters PM-PIP2 extraction & cleavage, endoplasmic reticulum (ER)-Ca2+ release and mitochondrial energetics. The theoretical ember of draining fuel from the chemoresistant LSCs by restraining endoplasmic reticulum (ER)-mitochondria Ca2+ fluxes in a lipid-contingent fashion ensues. In light of relevant literature, this review briefly and critically discusses some key molecular ins & outs underlying such therapeutic opportunity in acute myeloid leukemia (AML).


Calcium/metabolism , Leukemia/metabolism , Leukemia/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Animals , Cholesterol/metabolism , Humans , Signal Transduction
8.
Cancers (Basel) ; 12(6)2020 Jun 04.
Article En | MEDLINE | ID: mdl-32512734

Speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) is the most commonly mutated gene in prostate cancer (PCa). Recent evidence reports a role of SPOP in DNA damage response (DDR), indicating a possible impact of SPOP deregulation on PCa radiosensitivity. This study aimed to define the role of SPOP deregulation (by gene mutation or knockdown) as a radiosensitizing factor in PCa preclinical models. To express WT or mutant (Y87N, K129E and F133V) SPOP, DU145 and PC-3 cells were transfected with pMCV6 vectors. Sensitivity profiles were assessed using clonogenic assay and immunofluorescent staining of γH2AX and RAD51 foci. SCID xenografts were treated with 5 Gy single dose irradiation using an image-guided small animal irradiator. siRNA and miRNA mimics were used to silence SPOP or express the SPOP negative regulator miR-145, respectively. SPOP deregulation, by either gene mutation or knockdown, consistently enhanced the radiation response of PCa models by impairing DDR, as indicated by transcriptome analysis and functionally confirmed by decreased RAD51 foci. SPOP silencing also resulted in a significant downregulation of RAD51 and CHK1 expression, consistent with the impairment of homologous recombination. Our results indicate that SPOP deregulation plays a radiosensitizing role in PCa by impairing DDR via downregulation of RAD51 and CHK1.

9.
Cells ; 9(2)2020 02 13.
Article En | MEDLINE | ID: mdl-32069895

The development of novel therapies or the improvement of currently used approaches to treat prostate cancer (PCa), the most frequently diagnosed male tumor in developed countries, is an urgent need. In this regard, the functional characterization of microRNAs, molecules shown to regulate a number of cancer-related pathways, is instrumental to their possible clinical exploitation. Here, we demonstrate the tumor-suppressive role of the so far uncharacterized miR-1272, which we found to be significantly down-modulated in PCa clinical specimens compared to normal tissues. Through a gain-of-function approach using miRNA mimics, we showed that miR-1272 supplementation in two PCa cell models (DU145 and 22Rv1) reverted the mesenchymal phenotype by affecting migratory and invasive properties, and reduced cell growth in vitro and in vivo in SCID mice. Additionally, by targeting HIP1 encoding the endocytic protein HIP1, miR-1272 balanced EGFR membrane turnover, thus affecting the downstream AKT/ERK pathways, and, ultimately, increasing PCa cell response to ionizing radiation. Overall, our results show that miR-1272 reconstitution can affect several tumor traits, thus suggesting this approach as a potential novel therapeutic strategy to be pursued for PCa, with the multiple aim of reducing tumor growth, enhancing response to radiotherapy and limiting metastatic dissemination.


DNA-Binding Proteins/antagonists & inhibitors , MicroRNAs/metabolism , Prostatic Neoplasms/metabolism , Animals , Apoptosis/physiology , Cell Line, Tumor , Heterografts , Humans , Male , Mice , Mice, SCID , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Transfection
10.
Data Brief ; 29: 105139, 2020 Apr.
Article En | MEDLINE | ID: mdl-32016147

Although the role of miR-205 has been widely elucidated, the function of its host gene (MIR205HG) is yet to be clarified. We have recently investigated whether this gene is a simple endorsement for miRNA production or it may act independently, demonstrating its action as nuclear long noncoding RNA able to control basal-luminal differentiation in the human prostate context, thus deserving the reannotation as LEADR, Long Epithelial Alu-interacting Differentiation-related RNA. Here, we describe the loss and gain of function approaches experimentally used to modulate LEADR expression, and the bioinformatic procedures employed to analyze microarray data in our published article "LEADeR role of miR-205 host gene as long noncoding RNA in prostate basal cell differentiation" [1]. The high reproducibility of replicates, the strong concordance with a validation technique, and the coherent behavior observed for differentially expression features, both in terms of single genes and deregulated pathways, not only support the quality of the data, but also endorse their potential reuse. Very relevant are the diverse silencing and overexpression strategies employed (all of which analyzed in multiple biologically independent replicates), which should allow other scientists to analyze our dataset for the specific purpose of their research, may it be the study of MIR205HG function as miRNA host gene, the investigation of its miRNA-independent biological role or again the dissection of Alu sequence involvement in the mechanism of action of long noncoding RNAs, which is a hot topic in the field.

11.
Cancers (Basel) ; 11(7)2019 Jul 19.
Article En | MEDLINE | ID: mdl-31331120

Epithelioid sarcoma (ES) is a rare mesenchymal malignancy marked by SMARCB1/INI1 deficiency. Retrospective clinical data report on the activity of anthracycline- and gemcitabine-based regimens. EZH2 inhibitors are currently being tested in clinical trials. Since comparisons of these agents are unlikely to be prospectively evaluated in the clinics, we took advantage of an INI1-deficient proximal-type ES patient-derived xenograft (PDX ES-1) to comparatively assess its preclinical antitumor activity. Mice were treated with doxorubicin and ifosfamide, singly or in combination, gemcitabine, and the EZH2 inhibitor EPZ-011989. Comparable antitumor activity (max tumor volume inhibition: ~90%) was caused by gemcitabine, EPZ-011989, and the doxorubicin-ifosfamide combination. The integration of RNAseq data, generated on tumors obtained from untreated and EPZ-011989-treated mice, and results from functional studies, carried out on the PDX-derived ES-1 cell line, revealed autophagy induction as a possible survival mechanism in residual tumor cells following EPZ-011989 treatment and identified HMGA2 as a main player in this process. Our data support the clinical use of gemcitabine and the doxorubicin-ifosfamide combination, confirm EZH2 as a therapeutic target in proximal-type ES, and suggest autophagy as a cytoprotective mechanism against EZH2 inhibition.

12.
Nat Commun ; 10(1): 307, 2019 01 18.
Article En | MEDLINE | ID: mdl-30659180

Though miR-205 function has been largely characterized, the nature of its host gene, MIR205HG, is still completely unknown. Here, we show that only lowly expressed alternatively spliced MIR205HG transcripts act as de facto pri-miRNAs, through a process that involves Drosha to prevent unfavorable splicing and directly mediate miR-205 excision. Notably, MIR205HG-specific processed transcripts revealed to be functional per se as nuclear long noncoding RNA capable of regulating differentiation of human prostate basal cells through control of the interferon pathway. At molecular level, MIR205HG directly binds the promoters of its target genes, which have an Alu element in proximity of the Interferon-Regulatory Factor (IRF) binding site, and represses their transcription likely buffering IRF1 activity, with the ultimate effect of preventing luminal differentiation. As MIR205HG functions autonomously from (albeit complementing) miR-205 in preserving the basal identity of prostate epithelial cells, it warrants reannotation as LEADeR (Long Epithelial Alu-interacting Differentiation-related RNA).


MicroRNAs/genetics , Prostate/cytology , RNA, Long Noncoding/genetics , CRISPR-Cas Systems , Cell Differentiation , Cell Line, Tumor , Cells, Cultured , Epithelial Cells/metabolism , Gene Editing , Humans , Male , Promoter Regions, Genetic , Prostate/metabolism , Ribonuclease III/metabolism , Transcriptome
13.
Oncotarget ; 7(33): 53540-53557, 2016 Aug 16.
Article En | MEDLINE | ID: mdl-27447550

Hypoxia inducible transcription factors (HIFs) are the main regulators of adaptive responses to hypoxia and are often activated in solid tumors, but their role in leukemia is less clear. In acute myeloid leukemia (AML), in particular, controversial new findings indicate that HIF-1α can act either as an oncogene or a tumor suppressor gene, and this may depend on the stage of leukemia development and/or the AML sub-type.In this study, we find that HIF-1α promotes leukemia progression in the acute monocytic leukemia sub-type of AML through activation of an invasive phenotype. By applying a list of validated HIF-1α-target genes to different AML sub-types, we identified a HIF-1α signature that typifies acute monocytic leukemia when compared with all other AML sub-types. We validated expression of this signature in cell lines and primary cells from AML patients. Interestingly, this signature is enriched for genes that control cell motility at different levels. As a consequence, inhibiting HIF-1α impaired leukemia cell migration, chemotaxis, invasion and transendothelial migration in vitro, and this resulted in impaired bone marrow homing and leukemia progression in vivo. Our data suggest that in acute monocytic leukemia an active HIF-1α-dependent pro-invasive pathway mediates the ability of leukemic cells to migrate and invade extramedullary sites and may be targeted to reduce leukemia dissemination.


Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Leukemia, Monocytic, Acute/pathology , Animals , Cell Line, Tumor , Cell Movement/physiology , Disease Progression , Heterografts , Humans , Leukemia, Monocytic, Acute/metabolism , Mice , Phenotype
14.
Genome Med ; 6(12): 84, 2014.
Article En | MEDLINE | ID: mdl-25452766

BACKGROUND: Acute promyelocytic leukemia (APL) is a sub-type of acute myeloid leukemia (AML) characterized by a block of myeloid differentiation at the promyelocytic stage and the predominant t(15:17) chromosomal translocation. We have previously determined that cells from APL patients show increased expression of genes regulated by hypoxia-inducible transcription factors (HIFs) compared to normal promyelocytes. HIFs regulate crucial aspects of solid tumor progression and are currently being implicated in leukemogenesis. METHODS: To investigate the contribution of hypoxia-related signaling in APL compared to other AML sub-types, we reverse engineered a transcriptional network from gene expression profiles of AML patients' samples, starting from a list of direct target genes of HIF-1. A HIF-1-dependent subnetwork of genes specifically dysregulated in APL was derived from the comparison between APL and other AMLs. RESULTS: Interestingly, this subnetwork shows a unique involvement of genes related to extracellular matrix interaction and cell migration, with decreased expression of genes involved in cell adhesion and increased expression of genes implicated in motility and invasion, thus unveiling the presence of characteristics of epithelial-mesenchymal transition (EMT). We observed that the genes of this subnetwork, whose dysregulation shows a peculiar pattern across different AML sub-types, distinguish malignant from normal promyelocytes, thus ruling out dependence on a myeloid developmental stage. Also, expression of these genes is reversed upon treatment of APL-derived NB4 cells with all-trans retinoic acid and cell differentiation. CONCLUSIONS: Our data suggest that pathways related to EMT-like processes can be implicated also in hematological malignancies besides solid tumors, and can identify specific AML sub-types.

15.
EMBO Mol Med ; 6(5): 640-50, 2014 May.
Article En | MEDLINE | ID: mdl-24711541

Acute promyelocytic leukemia (APL) is epitomized by the chromosomal translocation t(15;17) and the resulting oncogenic fusion protein PML-RARα. Although acting primarily as a transcriptional repressor, PML-RARα can also exert functions of transcriptional co-activation. Here, we find that PML-RARα stimulates transcription driven by HIF factors, which are critical regulators of adaptive responses to hypoxia and stem cell maintenance. Consistently, HIF-related gene signatures are upregulated in leukemic promyelocytes from APL patients compared to normal promyelocytes. Through in vitro and in vivo studies, we find that PML-RARα exploits a number of HIF-1α-regulated pro-leukemogenic functions that include cell migration, bone marrow (BM) neo-angiogenesis and self-renewal of APL blasts. Furthermore, HIF-1α levels increase upon treatment of APL cells with all-trans retinoic acid (ATRA). As a consequence, inhibiting HIF-1α in APL mouse models delays leukemia progression and exquisitely synergizes with ATRA to eliminate leukemia-initiating cells (LICs).


Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Leukemia, Promyelocytic, Acute/physiopathology , Nuclear Proteins/metabolism , Receptors, Retinoic Acid/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cell Physiological Phenomena , Disease Models, Animal , Humans , Mice , Nuclear Proteins/genetics , Promyelocytic Leukemia Protein , Receptors, Retinoic Acid/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recurrence , Retinoic Acid Receptor alpha , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics
...