Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2400794, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207053

RESUMEN

Sphingolipids play vital roles in metabolism and regulation. Previously, the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, was reported to directly regulate ceramide synthesis genes by binding to their promoters. Herein, sphingosine kinase 2 (SPHK2), responsible for producing sphingosine-1-phosphate (S1P), was found to interact with AHR through LXXLL motifs, influencing AHR nuclear localization. Through mutagenesis and co-transfection studies, AHR activation and subsequent nuclear translocation was hindered by SPHK2 LXXLL mutants or SPHK2 lacking a nuclear localization signal (NLS). Similarly, an NLS-deficient AHR mutant impaired SPHK2 nuclear translocation. Silencing SPHK2 reduced AHR expression and its target gene CYP1A1, while SPHK2 overexpression enhanced AHR activity. SPHK2 was found enriched on the CYP1A1 promoter, underscoring its role in AHR target gene activation. Additionally, S1P rapidly increased AHR expression at both the mRNA and protein levels and promoted AHR recruitment to the CYP1A1 promoter. Using mouse models, AHR deficiency compromised SPHK2 nuclear translocation, illustrating a critical interaction where SPHK2 facilitates AHR nuclear localization and supports a positive feedback loop between AHR and sphingolipid enzyme activity in the nucleus. These findings highlight a novel function of SPHK2 in regulating AHR activity and gene expression.

2.
Environ Health Perspect ; 132(8): 87005, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39140734

RESUMEN

BACKGROUND: Exposure to persistent organic pollutants (POPs) and disruptions in the gastrointestinal microbiota have been positively correlated with a predisposition to factors such as obesity, metabolic syndrome, and type 2 diabetes; however, it is unclear how the microbiome contributes to this relationship. OBJECTIVE: This study aimed to explore the association between early life exposure to a potent aryl hydrocarbon receptor (AHR) agonist and persistent disruptions in the microbiota, leading to impaired metabolic homeostasis later in life. METHODS: This study used metagenomics, nuclear magnetic resonance (NMR)- and mass spectrometry (MS)-based metabolomics, and biochemical assays to analyze the gut microbiome composition and function, as well as the physiological and metabolic effects of early life exposure to 2,3,7,8-tetrachlorodibenzofuran (TCDF) in conventional, germ-free (GF), and Ahr-null mice. The impact of TCDF on Akkermansia muciniphila (A. muciniphila) in vitro was assessed using optical density (OD 600), flow cytometry, transcriptomics, and MS-based metabolomics. RESULTS: TCDF-exposed mice exhibited lower abundances of A. muciniphila, lower levels of cecal short-chain fatty acids (SCFAs) and indole-3-lactic acid (ILA), as well as lower levels of the gut hormones glucagon-like peptide 1 (GLP-1) and peptide YY (PYY), findings suggestive of disruption in the gut microbiome community structure and function. Importantly, microbial and metabolic phenotypes associated with early life POP exposure were transferable to GF recipients in the absence of POP carry-over. In addition, AHR-independent interactions between POPs and the microbiota were observed, and they were significantly associated with growth, physiology, gene expression, and metabolic activity outcomes of A. muciniphila, supporting suppressed activity along the ILA pathway. CONCLUSIONS: These data obtained in a mouse model point to the complex effects of POPs on the host and microbiota, providing strong evidence that early life, short-term, and self-limiting POP exposure can adversely impact the microbiome, with effects persisting into later life with associated health implications. https://doi.org/10.1289/EHP13356.


Asunto(s)
Benzofuranos , Microbioma Gastrointestinal , Homeostasis , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Receptores de Hidrocarburo de Aril/metabolismo , Ratones , Homeostasis/efectos de los fármacos , Contaminantes Orgánicos Persistentes , Masculino , Ligandos
3.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39201268

RESUMEN

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent organic pollutant and a potent aryl hydrocarbon receptor (AHR) ligand, causes delayed intestinal motility and affects the survival of enteric neurons. In this study, we investigated the specific signaling pathways and molecular targets involved in TCDD-induced enteric neurotoxicity. Immortalized fetal enteric neuronal (IM-FEN) cells treated with 10 nM TCDD exhibited cytotoxicity and caspase 3/7 activation, indicating apoptosis. Increased cleaved caspase-3 expression with TCDD treatment, as assessed by immunostaining in enteric neuronal cells isolated from WT mice but not in neural crest cell-specific Ahr deletion mutant mice (Wnt1Cre+/-/Ahrb(fl/fl)), emphasized the pivotal role of AHR in this process. Importantly, the apoptosis in IM-FEN cells treated with TCDD was mediated through a ceramide-dependent pathway, independent of endoplasmic reticulum stress, as evidenced by increased ceramide synthesis and the reversal of cytotoxic effects with myriocin, a potent inhibitor of ceramide biosynthesis. We identified Sptlc2 and Smpd2 as potential gene targets of AHR in ceramide regulation by a chromatin immunoprecipitation (ChIP) assay in IM-FEN cells. Additionally, TCDD downregulated phosphorylated Akt and phosphorylated Ser9-GSK-3ß levels, implicating the PI3 kinase/AKT pathway in TCDD-induced neurotoxicity. Overall, this study provides important insights into the mechanisms underlying TCDD-induced enteric neurotoxicity and identifies potential targets for the development of therapeutic interventions.


Asunto(s)
Apoptosis , Ceramidas , Estrés del Retículo Endoplásmico , Neuronas , Dibenzodioxinas Policloradas , Receptores de Hidrocarburo de Aril , Transducción de Señal , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Animales , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Dibenzodioxinas Policloradas/toxicidad , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ceramidas/metabolismo , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/efectos de los fármacos
4.
Biomolecules ; 14(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38927010

RESUMEN

Nuclear hormone receptors exist in dynamic equilibrium between transcriptionally active and inactive complexes dependent on interactions with ligands, proteins, and chromatin. The present studies examined the hypothesis that endogenous ligands activate peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) in keratinocytes. The phorbol ester treatment or HRAS infection of primary keratinocytes increased fatty acids that were associated with enhanced PPARß/δ activity. Fatty acids caused PPARß/δ-dependent increases in chromatin occupancy and the expression of angiopoietin-like protein 4 (Angptl4) mRNA. Analyses demonstrated that stearoyl Co-A desaturase 1 (Scd1) mediates an increase in intracellular monounsaturated fatty acids in keratinocytes that act as PPARß/δ ligands. The activation of PPARß/δ with palmitoleic or oleic acid causes arrest at the G2/M phase of the cell cycle of HRAS-expressing keratinocytes that is not found in similarly treated HRAS-expressing Pparb/d-null keratinocytes. HRAS-expressing Scd1-null mouse keratinocytes exhibit enhanced cell proliferation, an effect that is mitigated by treatment with palmitoleic or oleic acid. Consistent with these findings, the ligand activation of PPARß/δ with GW0742 or oleic acid prevented UVB-induced non-melanoma skin carcinogenesis, an effect that required PPARß/δ. The results from these studies demonstrate that PPARß/δ has endogenous roles in keratinocytes and can be activated by lipids found in diet and cellular components.


Asunto(s)
Queratinocitos , PPAR delta , PPAR-beta , Estearoil-CoA Desaturasa , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , PPAR-beta/metabolismo , PPAR-beta/genética , Animales , Ratones , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , PPAR delta/metabolismo , PPAR delta/genética , Ácidos Grasos/metabolismo , Proteína 4 Similar a la Angiopoyetina/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Humanos , Ácido Oléico/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Monoinsaturados/metabolismo , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
6.
Regul Toxicol Pharmacol ; 149: 105598, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548044

RESUMEN

In 2022 the World Health Organization (WHO) published updated 'Toxic Equivalence Factors' (TEFs) for a wide variety of chlorinated dioxins, dibenzofurans and PCBs [collectively referred to as 'dioxin-like chemicals'; DLCs) that interact with the aryl hydrocarbon receptor (AHR)]. Their update used sophisticated statistical analysis of hundreds of published studies that reported estimation of 'Relative Effective Potency' (REP) values for individual DLC congeners. The weighting scheme used in their assessment of each study favored in vivo over in vitro studies and was based largely on rodent studies. In this Commentary, we highlight the large body of published studies that demonstrate large species differences in AHR-ligand activation and provide supporting evidence for our position that the WHO 2022 TEF values intended for use in human risk assessment of DLC mixtures will provide highly misleading overestimates of 'Toxic Equivalent Quotients' (TEQs), because of well-recognized striking differences in AHR ligand affinities between rodent (rat, mouse) and human. The data reviewed in our Commentary support the position that human tissue-derived estimates of REP/TEF values for individual DLC congeners, although uncertain, will provide much better, more realistic estimates of potential activation of the human AHR, when exposure to complex DLC mixtures occurs.


Asunto(s)
Receptores de Hidrocarburo de Aril , Especificidad de la Especie , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Humanos , Ligandos , Medición de Riesgo , Dioxinas/toxicidad , Bifenilos Policlorados/toxicidad , Ratas , Ratones
7.
FASEB J ; 38(4): e23471, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38358358

RESUMEN

The intestinal epithelial layer is susceptible to damage by chemical, physiological and mechanical stress. While it is essential to maintain the integrity of epithelium, the biochemical pathways that contribute to the barrier function have not been completely investigated. Here we demonstrate an aryl hydrocarbon receptor (AHR)-dependent mechanism facilitating the production of the antimicrobial peptide AMP regenerating islet-derived protein 3 gamma (REG3G), which is essential for intestinal homeostasis. Genetic ablation of AHR in mice impairs pSTAT3-mediated REG3G expression and increases bacterial numbers of Segmented filamentous bacteria (SFB) and Akkermansia muciniphila in the small intestine. Studies with tissue-specific conditional knockout mice revealed that the presence of AHR in the epithelial cells of the small intestine is not required for the production of REG3G through the phosphorylated STAT3-mediated pathway. However, immune-cell-specific AHR activity is necessary for normal expression of REG3G in all regions of the small intestine. A diet rich in broccoli, capable of inducing AHR activity, increases REG3G production when compared to a semi-purified diet that is devoid of ligands that can potentially activate the AHR, thus highlighting the importance of AHR in antimicrobial function. Overall, these data suggest that homeostatic antimicrobial REG3G production is increased by an AHR pathway intrinsic to the immune cells in the small intestine.


Asunto(s)
Antiinfecciosos , Receptores de Hidrocarburo de Aril , Animales , Ratones , Citoesqueleto , Células Epiteliales , Intestino Delgado , Ratones Noqueados , Receptores de Hidrocarburo de Aril/genética
8.
Mucosal Immunol ; 16(6): 826-842, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37716509

RESUMEN

This study investigated the role of Alpha-tocopherylquinone (TQ) in regulating the intestinal immune system and the underlying mechanisms. In the experimental dextran sodium sulfate and T cell-mediated colitis models, TQ significantly reduced the mRNA levels of interleukin (IL)-6, IL-1ß, IL-17A, IL-23, and tumor necrosis factor (TNF)-α and the abundance of proinflammatory macrophages, T helper (Th)17 cells, and ILC3s in the colons of wild-type mice. TQ also prevented lipopolysaccharide (LPS)-induced activation of NFκB and signal transducer and activator of transcription (Stat)-3 pathways in the human macrophage U937 cells. Pharmacological inhibition or CRISPR-Cas-9-mediated knockout of Aryl hydrocarbon Receptor (AhR) prevented the anti-inflammatory effects of TQ in the LPS-treated U937 cells. Furthermore, TQ reduced the mRNA levels of the LPS-induced pro-inflammatory cytokines in the WT but not Ahr-/- mice splenocytes. TQ also reduced IL-6R protein levels and IL-6-induced Stat-3 activation in Jurkat cells and in vitro differentiation of Th17 cells from wild-type but not Ahr-/- mice naive T cells. Additionally, TQ prevented the pro-inflammatory effects of LPS on macrophages and stimulation of T cells in human PBMCs and significantly reduced the abundance of tumor necrosis factor-α, IL-1ß, and IL-6hi inflammatory macrophages and Th17 cells in surgically resected Crohn's disease (CD) tissue. Our study shows that TQ is a naturally occurring, non-toxic, and effective immune modulator that activates AhR and suppresses the Stat-3-NFκB signaling.


Asunto(s)
Citocinas , Interleucina-6 , Ratones , Humanos , Animales , Citocinas/metabolismo , Interleucina-6/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Lipopolisacáridos , Inflamación , Factor de Necrosis Tumoral alfa , ARN Mensajero/metabolismo
9.
Metabolites ; 13(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37755265

RESUMEN

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that plays an important role in gastrointestinal barrier function, tumorigenesis, and is an emerging drug target. The resident microbiota is capable of metabolizing tryptophan to metabolites that are AHR ligands (e.g., indole-3-acetate). Recently, a novel set of mutagenic tryptophan metabolites named indolimines have been identified that are produced by M. morganii in the gastrointestinal tract. Here, we determined that indolimine-200, -214, and -248 are direct AHR ligands that can induce Cyp1a1 transcription and subsequent CYP1A1 enzymatic activity capable of metabolizing the carcinogen benzo(a)pyrene in microsomal assays. In addition, indolimines enhance IL6 expression in a colonic tumor cell line in combination with cytokine treatment. The concentration of indolimine-248 that induces AHR transcriptional activity failed to increase DNA damage. These observations reveal an additional aspect of how indolimines may alter colonic tumorigenesis beyond mutagenic activity.

10.
Prostate ; 83(15): 1470-1493, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37559436

RESUMEN

BACKGROUND: The quinoline-3-carboxamide, Tasquinimod (TasQ), is orally active as a maintenance therapy with an on-target mechanism-of-action via allosteric binding to HDAC4. This prevents formation of the HDAC4/NCoR1/HDAC3 complex, disrupting HIF-1α transcriptional activation and repressing MEF-2 target genes needed for adaptive survival signaling in the compromised tumor micro environment. In phase 3 clinical testing against metastatic castration-resistant prostate cancer(mCRPC), TasQ (1 mg/day) increased time-to-progression, but not overall survival. METHODS: TasQ analogs were chemically synthesized and tested for activity compared to the parental compound. These included HDAC4 enzymatic assays, qRT-PCR and western blot analyses of gene and protein expression following treatment, in vitro and in vivo efficacy against multiple prostate cancer models including PDXs, pharmacokinetic analyses,AHR binding and agonist assays, SPR analyses of binding to HDAC4 and NCoR1, RNAseq analysis of in vivo tumors, 3D endothelial sprouting assays, and a targeted kinase screen. Genetic knockout or knockdown controls were used when appropriate. RESULTS: Here, we document that, on this regimen (1 mg/day), TasQ blood levels are 10-fold lower than the optimal concentration (≥2 µM) needed for anticancer activity, suggesting higher daily doses are needed. Unfortunately, we also demonstrate that TasQ is an arylhydrocarbon receptor (AHR) agonist, which binds with an EC50 of 1 µM to produce unwanted off-target side effects. Therefore, we screened a library of TasQ analogsto maximize on-target versus off-target activity. Using this approach, we identified ESATA-20, which has ~10-fold lower AHR agonism and 5-fold greater potency against prostate cancer patient-derived xenografts. CONCLUSION: This increased therapeuticindex nominates ESATA-20 as a lead candidate forclinical development as an orally active third generation quinoline-3-carboxamide analog thatretains its on-target ability to disrupt HDAC4/HIF-1α/MEF-2-dependent adaptive survival signaling in the compromisedtumor microenvironment found in mCRPC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Western Blotting , Línea Celular Tumoral , Microambiente Tumoral , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo
11.
Int J Tryptophan Res ; 16: 11786469231182510, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441265

RESUMEN

The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that plays an integral role in homeostatic maintenance by regulating cellular functions such as cellular differentiation, metabolism, barrier function, and immune response. An important but poorly understood class of AHR activators are compounds derived from host and bacterial metabolism of tryptophan. The commensal bacteria of the gut microbiome are major producers of tryptophan metabolites known to activate the AHR, while the host also produces AHR activators through tryptophan metabolism. We used targeted mass spectrometry-based metabolite profiling to determine the presence and metabolic source of these metabolites in the sera of conventional mice, germ-free mice, and humans. Surprisingly, sera concentrations of many tryptophan metabolites are comparable between germ-free and conventional mice. Therefore, many major AHR-activating tryptophan metabolites in mouse sera are produced by the host, despite their presence in feces and mouse cecal contents. Here we present an investigation of AHR activation using a complex mixture of tryptophan metabolites to examine the biological relevance of circulating tryptophan metabolites. AHR activation is rarely studied in the context of a mixture at relevant concentrations, as we present here. The AHR activation potentials of individual and pooled metabolites were explored using cell-based assays, while ligand binding competition assays and ligand docking simulations were used to assess the detected metabolites as AHR agonists. The physiological and biomedical relevance of the identified metabolites was investigated in the context of a cell-based model for rheumatoid arthritis. We present data that reframe AHR biology to include the presence of a mixture of ubiquitous tryptophan metabolites, improving our understanding of homeostatic AHR activity and models of AHR-linked diseases.

12.
Cell Rep ; 42(7): 112705, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37393618

RESUMEN

Defects in intestinal epithelial tight junctions (TJs) allow paracellular permeation of noxious luminal antigens and are important pathogenic factors in inflammatory bowel disease (IBD). We show that alpha-tocopherylquinone (TQ), a quinone-structured oxidation product of vitamin E, consistently enhances the intestinal TJ barrier by increasing barrier-forming claudin-3 (CLDN3) and reducing channel-forming CLDN2 in Caco-2 cell monolayers (in vitro), mouse models (in vivo), and surgically resected human colons (ex vivo). TQ reduces colonic permeability and ameliorates colitis symptoms in multiple colitis models. TQ, bifunctionally, activates both aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. Genetic deletion studies reveal that TQ-induced AhR activation transcriptionally increases CLDN3 via xenobiotic response element (XRE) in the CLDN3 promoter. Conversely, TQ suppresses CLDN2 expression via Nrf2-mediated STAT3 inhibition. TQ offers a naturally occurring, non-toxic intervention for enhancement of the intestinal TJ barrier and adjunct therapeutics to treat intestinal inflammation.


Asunto(s)
Claudinas , Colitis , Ratones , Animales , Humanos , Claudinas/metabolismo , Células CACO-2 , Factor 2 Relacionado con NF-E2/metabolismo , Mucosa Intestinal/metabolismo , Uniones Estrechas/metabolismo , Receptores de Hidrocarburo de Aril/genética , Colitis/metabolismo , Vitamina E/metabolismo , Permeabilidad
13.
J Funct Foods ; 1062023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37397272

RESUMEN

Diet-derived aryl hydrocarbon receptor (AHR) ligands have potential to maintain gut health. However, among the myriad bioactive compounds from foods, identifying novel functional ligands which would significantly impact gastrointestinal health is a challenge. In this study, a novel AHR modulator is predicted, identified, and characterized in the white button mushroom (Agaricus bisporus). Using a molecular networking approach, a methylated analog to benzothiazole was indicated in white button mushrooms, which was subsequently isolated and identified as 2-amino-4-methyl-benzothiazole(2A4). Cell-based AHR transcriptional assays revealed that 2-amino-4-methyl-benzothiazole possesses agonistic activity and upregulated CYP1A1 expression. This contrasts with previous findings that whole white button mushroom extract has overall antagonistic activity in vivo, underscoring the importance of studying the roles each chemical component plays in a whole food. The findings suggest that 2-amino-4-methyl-benzothiazole is a previously unidentified AHR modulator from white button mushroom and demonstrate that molecular networking has potential to identify novel receptor modulators from natural products.

14.
Int J Tryptophan Res ; 16: 11786469231182508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434789

RESUMEN

The aryl hydrocarbon receptor (AHR) exerts major roles in xenobiotic metabolism, and in immune and barrier tissue homeostasis. How AHR activity is regulated by the availability of endogenous ligands is poorly understood. Potent AHR ligands have been shown to exhibit a negative feedback loop through induction of CYP1A1, leading to metabolism of the ligand. Our recent study identified and quantified 6 tryptophan metabolites (eg, indole-3-propionic acid, and indole-3-acetic acid) in mouse and human serum, generated by the host and gut microbiome, that are present in sufficient concentrations to individually activate the AHR. Here, these metabolites are not significantly metabolized by CYP1A1/1B1 in an in vitro metabolism assay. In contrast, CYP1A1/1B metabolizes the potent endogenous AHR ligand 6-formylindolo[3,2b]carbazole. Furthermore, molecular modeling of these 6 AHR activating tryptophan metabolites within the active site of CYP1A1/1B1 reveal metabolically unfavorable docking profiles with regard to orientation with the catalytic heme center. In contrast, docking studies confirmed that 6-formylindolo[3,2b]carbazole would be a potent substrate. The lack of CYP1A1 expression in mice fails to influence serum levels of the tryptophan metabolites examined. In addition, marked induction of CYP1A1 by PCB126 exposure in mice failed to alter the serum concentrations of these tryptophan metabolites. These results suggest that certain circulating tryptophan metabolites are not susceptible to an AHR negative feedback loop and are likely important factors that mediate constitutive but low level systemic human AHR activity.

15.
FASEB J ; 37(7): e23010, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37272852

RESUMEN

The aryl hydrocarbon receptor (AHR) mediates intestinal barrier homeostasis. Many AHR ligands are also CYP1A1/1B1 substrates, which can result in rapid clearance within the intestinal tract, limiting systemic exposure and subsequent AHR activation. This led us to the hypothesis that there are dietary substrates of CYP1A1/1B1 that functionally increase the half-life of potent AHR ligands. We examined the potential of urolithin A (UroA), a gut bacterial metabolite of ellagitannins, as a CYP1A1/1B1 substrate to enhance AHR activity in vivo. UroA is a competitive substrate for CYP1A1/1B1 in an in vitro competition assay. A broccoli-containing diet promotes the gastric formation of the potent hydrophobic AHR ligand and CYP1A1/1B1 substrate, 5,11-dihydroindolo[3,2-b]carbazole (ICZ). In mice, dietary exposure to UroA in a 10% broccoli diet led to a coordinated increase in duodenal, cardiac, and pulmonary AHR activity, but no increase in activity in the liver. Thus, CYP1A1 dietary competitive substrates can lead to enhanced systemic AHR ligand distribution from the gut, likely through the lymphatic system, increasing AHR activation in key barrier tissues. Finally, this report will lead to a reassessment of the dynamics of distribution of other hydrophobic chemicals present in the diet.


Asunto(s)
Citocromo P-450 CYP1A1 , Tracto Gastrointestinal , Pulmón , Receptores de Hidrocarburo de Aril , Animales , Ratones , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ligandos , Hígado/metabolismo , Pulmón/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Dieta , Tracto Gastrointestinal/metabolismo
16.
Lab Invest ; 103(2): 100012, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37039146

RESUMEN

In the face of mechanical, chemical, microbial, and immunologic pressure, intestinal homeostasis is maintained through balanced cellular turnover, proliferation, differentiation, and self-renewal. Here, we present evidence supporting the role of the aryl hydrocarbon receptor (AHR) in the adaptive reprogramming of small intestinal gene expression, leading to altered proliferation, lineage commitment, and remodeling of the cellular repertoire that comprises the intestinal epithelium to promote intestinal resilience. Ahr gene/protein expression and transcriptional activity exhibit marked proximalHI to distalLO and cryptHI to villiLO gradients. Genetic ablation of Ahr impairs commitment/differentiation of the secretory Paneth and goblet cell lineages and associated mucin production, restricts expression of secretory/enterocyte differentiation markers, and increases crypt-associated proliferation and villi-associated enterocyte luminal exfoliation. Ahr-/- mice display a decrease in intestinal barrier function. Ahr+/+ mice that maintain a diet devoid of AHR ligands intestinally phenocopy Ahr-/- mice. In contrast, Ahr+/+ mice exposed to AHR ligands reverse these phenotypes. Ligand-induced AHR transcriptional activity positively correlates with gene expression (Math1, Klf4, Tff3) associated with differentiation of the goblet cell secretory lineage. Math1 was identified as a direct target gene of AHR, a transcription factor critical to the development of goblet cells. These data suggest that dietary cues, relayed through the transcriptional activity of AHR, can reshape the cellular repertoire of the gastrointestinal tract.


Asunto(s)
Células Epiteliales , Receptores de Hidrocarburo de Aril , Animales , Ratones , Diferenciación Celular , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Ligandos , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
17.
bioRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36865156

RESUMEN

The aryl hydrocarbon receptor (AHR) mediates intestinal barrier homeostasis. Many AHR ligands are also CYP1A1/1B1 substrates, which can result in the rapid clearance within the intestinal tract, limiting AHR activation. This led us to the hypothesis that there are dietary substrates of CYP1A1/1B1 that increase the half-life of potent AHR ligands. We examined the potential of urolithin A (UroA) as a CYP1A1/1B1 substrate to enhance AHR activity in vivo. UroA is a competitive substrate for CYP1A1/1B1 in an in vitro competition assay. A broccoli-containing diet promotes the gastric formation of the potent hydrophobic AHR ligand and CYP1A1/1B1 substrate, 5,11-dihydroindolo[3,2-b]carbazole (ICZ). Dietary exposure to UroA in a broccoli diet led to a coordinated increase in duodenal, cardiac, and pulmonary AHR activity, but no increase in activity in liver. Thus, CYP1A1 dietary competitive substrates can lead to intestinal escape, likely through the lymphatic system, increasing AHR activation in key barrier tissues.

18.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982624

RESUMEN

The aryl hydrocarbon receptor (AHR) is a sensor of low-molecular-weight molecule signals that originate from environmental exposures, the microbiome, and host metabolism. Building upon initial studies examining anthropogenic chemical exposures, the list of AHR ligands of microbial, diet, and host metabolism origin continues to grow and has provided important clues as to the function of this enigmatic receptor. The AHR has now been shown to be directly involved in numerous biochemical pathways that influence host homeostasis, chronic disease development, and responses to toxic insults. As this field of study has continued to grow, it has become apparent that the AHR is an important novel target for cancer, metabolic diseases, skin conditions, and autoimmune disease. This meeting attempted to cover the scope of basic and applied research being performed to address possible applications of our basic knowledge of this receptor on therapeutic outcomes.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Humanos , Receptores de Hidrocarburo de Aril/metabolismo , Universidades , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Dieta
19.
bioRxiv ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36747842

RESUMEN

The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that plays an integral role in homeostatic maintenance by regulating cellular functions such as cellular differentiation, metabolism, barrier function, and immune response. An important but poorly understood class of AHR activators are compounds derived from host and bacterial metabolism of tryptophan. The commensal bacteria of the gut microbiome are major producers of tryptophan metabolites known to activate the AHR, while the host also produces AHR activators through tryptophan metabolism. We used targeted mass spectrometry-based metabolite profiling to determine the presence and metabolic source of these metabolites in the sera of conventional mice, germ-free mice, and humans. Surprisingly, sera concentrations of many tryptophan metabolites are comparable between germ-free and conventional mice. Therefore, many major AHR-activating tryptophan metabolites in mouse sera are produced by the host, despite their presence in feces and mouse cecal contents. AHR activation is rarely studied in the context of a mixture at relevant concentrations, as we present here. The AHR activation potentials of individual and pooled metabolites were explored using cell-based assays, while ligand binding competition assays and ligand docking simulations were used to assess the detected metabolites as AHR agonists. The physiological and biomedical relevance of the identified metabolites was investigated in the context of cell-based models for cancer and rheumatoid arthritis. We present data here that reframe AHR biology to include the presence of ubiquitous tryptophan metabolites, improving our understanding of homeostatic AHR activity and models of AHR-linked diseases.

20.
Toxicol Sci ; 192(1): 117-128, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36782369

RESUMEN

Despite progress describing the effects of persistent organic pollutants (POPs) on the central nervous system, the effect of POPs on enteric nervous system (ENS) function remains underexplored. We studied the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a POP, and a potent aryl hydrocarbon receptor (AHR) ligand, on the ENS and intestinal motility in mice. C57Bl/6J mice treated with TCDD (2.4 µg/kg body weight) for 8 weeks (once per week) exhibited significant delay in intestinal motility as shown by reduced stool frequency, prolonged intestinal transit time, and a persistence of dye in the jejunum compared to control mice with maximal dye retention in the ileum. TCDD significantly increased Cyp1a1 expression, an AHR target gene, and reduced the total number of neurons and affected nitrergic neurons in cells isolated from WT mice, but not Ahr-/- mice. In immortalized fetal enteric neuronal cells, TCDD-induced nuclear translocation of AHR as well as increased Cyp1a1 expression. AHR activation did not affect neuronal proliferation. However, AHR activation resulted in enteric neuronal toxicity, specifically, nitrergic neurons. Our results demonstrate that TCDD adversely affects nitrergic neurons and thereby contributes to delayed intestinal motility. These findings suggest that AHR signaling in the ENS may play a role in modulating TCDD-induced gastrointestinal pathophysiology.


Asunto(s)
Contaminantes Ambientales , Neuronas Nitrérgicas , Dibenzodioxinas Policloradas , Animales , Ratones , Receptores de Hidrocarburo de Aril/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Neuronas Nitrérgicas/metabolismo , Dibenzodioxinas Policloradas/toxicidad , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA