Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA Biol ; 20(1): 149-153, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074161

RESUMEN

RNA-based enzyme RNase P is a ribonucleoprotein complex responsible primarily for 5'-maturation of tRNAs. S. cerevisiae RNase P comprises a catalytic RNA component and nine proteins. The assembly and maturation of S. cerevisiae RNase P involves an abundant and catalytically active precursor form, which includes all components except for proteins Rpr2 and Pop3. Rpr2 and Pop3 are essential proteins, but their roles in RNase P were not clear. Here we use a step-wise in vitro assembly of yeast RNase P to show that the addition of proteins Rpr2 and Pop3 increases the activity and thermal stability of the RNase P complex, similar to the effects previously observed for archaeal RNases P.


Asunto(s)
ARN Catalítico , Proteínas de Saccharomyces cerevisiae , Ribonucleasa P/genética , Saccharomyces cerevisiae/metabolismo , ARN/metabolismo , ARN Catalítico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Endorribonucleasas/metabolismo
2.
Nat Commun ; 11(1): 3474, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651392

RESUMEN

RNase MRP is an essential eukaryotic ribonucleoprotein complex involved in the maturation of rRNA and the regulation of the cell cycle. RNase MRP is related to the ribozyme-based RNase P, but it has evolved to have distinct cellular roles. We report a cryo-EM structure of the S. cerevisiae RNase MRP holoenzyme solved to 3.0 Å. We describe the structure of this 450 kDa complex, interactions between its components, and the organization of its catalytic RNA. We show that some of the RNase MRP proteins shared with RNase P undergo an unexpected RNA-driven remodeling that allows them to bind to divergent RNAs. Further, we reveal how this RNA-driven protein remodeling, acting together with the introduction of new auxiliary elements, results in the functional diversification of RNase MRP and its progenitor, RNase P, and demonstrate structural underpinnings of the acquisition of new functions by catalytic RNPs.


Asunto(s)
Microscopía por Crioelectrón , Endorribonucleasas/ultraestructura , Ribonucleoproteínas/ultraestructura , Carbono/química , Catálisis , Dominio Catalítico , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , ARN Catalítico/química , ARN de Hongos/química , Ribonucleasa P/química , Saccharomyces cerevisiae/enzimología
3.
Nucleic Acids Res ; 46(13): 6857-6868, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29722866

RESUMEN

RNase P is a ubiquitous site-specific endoribonuclease primarily responsible for the maturation of tRNA. Throughout the three domains of life, the canonical form of RNase P is a ribonucleoprotein (RNP) built around a catalytic RNA. The core RNA is well conserved from bacteria to eukaryotes, whereas the protein parts vary significantly. The most complex and the least understood form of RNase P is found in eukaryotes, where multiple essential proteins playing largely unknown roles constitute the bulk of the enzyme. Eukaryotic RNase P was considered intractable to in vitro reconstitution, mostly due to insolubility of its protein components, which hindered its studies. We have developed a robust approach to the in vitro reconstitution of Saccharomyces cerevisiae RNase P RNPs and used it to analyze the interplay and roles of RNase P components. The results eliminate the major obstacle to biochemical and structural studies of eukaryotic RNase P, identify components required for the activation of the catalytic RNA, reveal roles of proteins in the enzyme stability, localize proteins on RNase P RNA, and demonstrate the interdependence of the binding of RNase P protein modules to the core RNA.


Asunto(s)
Ribonucleasa P/química , Ribonucleasa P/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Huella de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN de Hongos/química , ARN de Hongos/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química
4.
Cell ; 165(5): 1171-1181, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27156450

RESUMEN

Telomerase is the ribonucleoprotein enzyme that replenishes telomeric DNA and maintains genome integrity. Minimally, telomerase activity requires a templating RNA and a catalytic protein. Additional proteins are required for activity on telomeres in vivo. Here, we report that the Pop1, Pop6, and Pop7 proteins, known components of RNase P and RNase MRP, bind to yeast telomerase RNA and are essential constituents of the telomerase holoenzyme. Pop1/Pop6/Pop7 binding is specific and involves an RNA domain highly similar to a protein-binding domain in the RNAs of RNase P/MRP. The results also show that Pop1/Pop6/Pop7 function to maintain the essential components Est1 and Est2 on the RNA in vivo. Consistently, addition of Pop1 allows for telomerase activity reconstitution with wild-type telomerase RNA in vitro. Thus, the same chaperoning module has allowed the evolution of functionally and, remarkably, structurally distinct RNPs, telomerase, and RNases P/MRP from unrelated progenitor RNAs.


Asunto(s)
Ribonucleasa P/química , Ribonucleoproteínas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomycetales/enzimología , Telomerasa/química , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Inmunoprecipitación , Espectrometría de Masas , Modelos Moleculares , ARN de Hongos/metabolismo , Ribonucleasa P/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/metabolismo
5.
RNA ; 21(9): 1591-605, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26135751

RESUMEN

Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA-RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P.


Asunto(s)
Huella de Proteína/métodos , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Endorribonucleasas/química , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Catalítico/química , ARN de Hongos/química , Ribonucleasa P/química , Ribonucleasa P/genética , Ribonucleasa P/metabolismo , Ribonucleasas/química , Ribonucleasas/genética , Ribonucleasas/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nucleic Acids Res ; 41(14): 7084-91, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23700311

RESUMEN

Ribonuclease (RNase) MRP is a ubiquitous and essential site-specific eukaryotic endoribonuclease involved in the metabolism of a wide range of RNA molecules. RNase MRP is a ribonucleoprotein with a large catalytic RNA moiety that is closely related to the RNA component of RNase P, and multiple proteins, most of which are shared with RNase P. Here, we report the results of an ultraviolet-cross-linking analysis of interactions between a photoreactive RNase MRP substrate and the Saccharomyces cerevisiae RNase MRP holoenzyme. The results show that the substrate interacts with phylogenetically conserved RNA elements universally found in all enzymes of the RNase P/MRP family, as well as with a phylogenetically conserved RNA region that is unique to RNase MRP, and demonstrate that four RNase MRP protein components, all shared with RNase P, interact with the substrate. Implications for the structural organization of RNase MRP and the roles of its components are discussed.


Asunto(s)
Endorribonucleasas/metabolismo , Ribonucleoproteínas/metabolismo , Endorribonucleasas/química , Endorribonucleasas/clasificación , Holoenzimas/metabolismo , Modelos Moleculares , Ribonucleoproteínas/química , Saccharomyces cerevisiae/enzimología
7.
Methods Mol Biol ; 905: 123-43, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22736002

RESUMEN

A broad range of biological processes relies on complexes between RNA and proteins. Crystallization of RNA-protein complexes can yield invaluable information on structural organizations of key elements of cellular machinery. However, crystallization of RNA-protein complexes is often challenging and requires special approaches. Here we review the purification of RNA, RNA-binding proteins, and the formation and crystallization of RNA-protein complexes, using the crystallization of the P3 RNA domain of ribonuclease MRP, a multicomponent ribonucleoprotein complex involved in the metabolism of various RNA molecules, as an example. The RNA-protein complex was formed using gel-purified RNA, produced by run-off transcription with T7 RNA polymerase in vitro, and proteins that were overexpressed in Escherichia coli and purified to be RNase-free. The complex was crystallized using a sitting drop setup; initial screening for suitable crystallization conditions was performed using a sparse matrix approach.


Asunto(s)
Fraccionamiento Químico/métodos , Cristalización/métodos , ARN/química , ARN/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo , ADN/genética , Electroforesis en Gel de Poliacrilamida , Oligonucleótidos/genética , Plásmidos/genética , ARN/biosíntesis , ARN/aislamiento & purificación , Ribonucleasas/biosíntesis , Ribonucleasas/aislamiento & purificación , Transcripción Genética , Levaduras/enzimología
8.
RNA ; 18(4): 720-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22332141

RESUMEN

Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.


Asunto(s)
Endorribonucleasas/metabolismo , ARN/metabolismo , Ribonucleasa P/metabolismo , Saccharomyces cerevisiae/enzimología , Rayos Ultravioleta , Endorribonucleasas/química , Ribonucleasa P/química
9.
RNA ; 17(10): 1922-31, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21878546

RESUMEN

Ribonuclease (RNase) MRP is a multicomponent ribonucleoprotein complex closely related to RNase P. RNase MRP and eukaryotic RNase P share most of their protein components, as well as multiple features of their catalytic RNA moieties, but have distinct substrate specificities. While RNase P is practically universally found in all three domains of life, RNase MRP is essential in eukaryotes. The structural organizations of eukaryotic RNase P and RNase MRP are poorly understood. Here, we show that Pop5 and Rpp1, protein components found in both RNase P and RNase MRP, form a heterodimer that binds directly to the conserved area of the putative catalytic domain of RNase MRP RNA. The Pop5/Rpp1 binding site corresponds to the protein binding site in bacterial RNase P RNA. Structural and evolutionary roles of the Pop5/Rpp1 heterodimer in RNases P and MRP are discussed.


Asunto(s)
Proteínas Portadoras/metabolismo , Dominio Catalítico , Endorribonucleasas/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Portadoras/química , Endorribonucleasas/química , Holoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Hongos/química , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia
10.
Nature ; 474(7350): 235-8, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21562494

RESUMEN

Protein translocation across the bacterial membrane, mediated by the secretory translocon SecYEG and the SecA ATPase, is enhanced by proton motive force and membrane-integrated SecDF, which associates with SecYEG. The role of SecDF has remained unclear, although it is proposed to function in later stages of translocation as well as in membrane protein biogenesis. Here, we determined the crystal structure of Thermus thermophilus SecDF at 3.3 Å resolution, revealing a pseudo-symmetrical, 12-helix transmembrane domain belonging to the RND superfamily and two major periplasmic domains, P1 and P4. Higher-resolution analysis of the periplasmic domains suggested that P1, which binds an unfolded protein, undergoes functionally important conformational changes. In vitro analyses identified an ATP-independent step of protein translocation that requires both SecDF and proton motive force. Electrophysiological analyses revealed that SecDF conducts protons in a manner dependent on pH and the presence of an unfolded protein, with conserved Asp and Arg residues at the transmembrane interface between SecD and SecF playing essential roles in the movements of protons and preproteins. Therefore, we propose that SecDF functions as a membrane-integrated chaperone, powered by proton motive force, to achieve ATP-independent protein translocation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Thermus thermophilus/química , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Asparagina/metabolismo , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Modelos Biológicos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Periplasma/química , Periplasma/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Desplegamiento Proteico , Fuerza Protón-Motriz , Electricidad Estática , Relación Estructura-Actividad , Thermus thermophilus/citología
11.
RNA ; 17(2): 356-64, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21173200

RESUMEN

The ribonucleoprotein complex ribonuclease (RNase) MRP is a site-specific endoribonuclease essential for the survival of the eukaryotic cell. RNase MRP closely resembles RNase P (a universal endoribonuclease responsible for the maturation of the 5' ends of tRNA) but recognizes distinct substrates including pre-rRNA and mRNA. Here we report the results of an in vitro selection of Saccharomyces cerevisiae RNase MRP substrates starting from a pool of random sequences. The results indicate that RNase MRP cleaves single-stranded RNA and is sensitive to sequences in the immediate vicinity of the cleavage site requiring a cytosine at the position +4 relative to the cleavage site. Structural implications of the differences in substrate recognition by RNases P and MRP are discussed.


Asunto(s)
Endorribonucleasas/química , Saccharomyces cerevisiae/enzimología , Secuencia de Bases , Sitios de Unión , Endorribonucleasas/metabolismo , Datos de Secuencia Molecular , Conformación Proteica , ARN/química , ARN/metabolismo , Precursores del ARN/química , Precursores del ARN/metabolismo , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
12.
RNA Biol ; 7(5): 534-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20523128

RESUMEN

Nuclear Ribonuclease (RNase) P is a universal essential RNA-based enzyme made of a catalytic RNA component and a protein part; eukaryotic RNase P is closely related to a universal eukaryotic ribonucleoprotein RNase MRP. The protein part of the eukaryotic RNases P/MRP is dramatically more complex than that in bacterial and archaeal RNases P. The increase in the complexity of the protein part in eukaryotic RNases P/MRP was accompanied by the appearance of a novel structural element in the RNA component: an essential and phylogenetically conserved helix-loop-helix P3 RNA domain. The crystal structure of the P3 RNA domain in a complex with protein components Pop6 and Pop7 has been recently solved. Here we discuss the most salient structural features of the P3 domain as well as its possible role in the evolutionary transition to the protein-rich eukaryotic RNases P/MRP.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/metabolismo , Evolución Molecular , Ribonucleasa P/química , Ribonucleasa P/metabolismo , Animales , Archaea/enzimología , Bacterias/enzimología , Hongos/enzimología , Humanos , Conformación de Ácido Nucleico , Ribonucleoproteínas/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-20057077

RESUMEN

Eukaryotic ribonucleases P and MRP are closely related RNA-based enzymes which contain a catalytic RNA component and several protein subunits. The roles of the protein subunits in the structure and function of eukaryotic ribonucleases P and MRP are not clear. Crystals of a complex that included a circularly permuted 46-nucleotide-long P3 domain of the RNA component of Saccharomyces cerevisiae ribonuclease MRP and selenomethionine derivatives of the shared ribonuclease P/MRP protein components Pop6 (18.2 kDa) and Pop7 (15.8 kDa) were obtained using the sitting-drop vapour-diffusion method. The crystals belonged to space group P4(2)22 (unit-cell parameters a = b = 127.2, c = 76.8 A, alpha = beta = gamma = 90 degrees ) and diffracted to 3.25 A resolution.


Asunto(s)
Endorribonucleasas/química , Ribonucleasa P/química , Cristalización , Cristalografía por Rayos X , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología
14.
EMBO J ; 29(4): 761-9, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20075859

RESUMEN

Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.


Asunto(s)
Endorribonucleasas/química , ARN de Hongos/química , Ribonucleasa P/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Secuencia de Bases , Cristalografía por Rayos X , Endorribonucleasas/genética , Holoenzimas/química , Holoenzimas/genética , Sustancias Macromoleculares/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN de Hongos/genética , Ribonucleasa P/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Homología de Secuencia de Aminoácido , Electricidad Estática
15.
Nature ; 455(7215): 988-91, 2008 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-18923527

RESUMEN

Over 30% of proteins are secreted across or integrated into membranes. Their newly synthesized forms contain either cleavable signal sequences or non-cleavable membrane anchor sequences, which direct them to the evolutionarily conserved Sec translocon (SecYEG in prokaryotes and Sec61, comprising alpha-, gamma- and beta-subunits, in eukaryotes). The translocon then functions as a protein-conducting channel. These processes of protein localization occur either at or after translation. In bacteria, the SecA ATPase drives post-translational translocation. The only high-resolution structure of a translocon available so far is that for SecYEbeta from the archaeon Methanococcus jannaschii, which lacks SecA. Here we present the 3.2-A-resolution crystal structure of the SecYE translocon from a SecA-containing organism, Thermus thermophilus. The structure, solved as a complex with an anti-SecY Fab fragment, revealed a 'pre-open' state of SecYE, in which several transmembrane helices are shifted, as compared to the previous SecYEbeta structure, to create a hydrophobic crack open to the cytoplasm. Fab and SecA bind to a common site at the tip of the cytoplasmic domain of SecY. Molecular dynamics and disulphide mapping analyses suggest that the pre-open state might represent a SecYE conformational transition that is inducible by SecA binding. Moreover, we identified a SecA-SecYE interface that comprises SecA residues originally buried inside the protein, indicating that both the channel and the motor components of the Sec machinery undergo cooperative conformational changes on formation of the functional complex.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Thermus thermophilus/química , Thermus thermophilus/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Sitios de Unión , Cristalografía por Rayos X , Disulfuros/química , Disulfuros/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Methanococcus/química , Methanococcus/enzimología , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Thermus thermophilus/genética
16.
RNA ; 14(8): 1558-67, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18579867

RESUMEN

Eukaryotic ribonuclease (RNase) P and RNase MRP are evolutionary related RNA-based enzymes involved in metabolism of various RNA molecules, including tRNA and rRNA. In contrast to the closely related eubacterial RNase P, which is comprised of an RNA component and a single small protein, these enzymes contain multiple protein components. Here we report the results of footprinting studies performed on purified Saccharomyces cerevisiae RNase MRP and RNase P holoenzymes. The results identify regions of the RNA components affected by the protein moiety, suggest a role of the proteins in stabilization of the RNA fold, and point to substantial similarities between the two evolutionary related RNA-based enzymes.


Asunto(s)
Endorribonucleasas/química , ARN Catalítico/metabolismo , ARN de Hongos/metabolismo , Ribonucleasa P/química , Ribonucleoproteínas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Secuencia de Bases , Endorribonucleasas/metabolismo , Evolución Molecular , Datos de Secuencia Molecular , Huella de Proteína , ARN Catalítico/química , ARN de Hongos/química , Ribonucleasa P/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
RNA ; 13(10): 1648-55, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17717080

RESUMEN

Pop6 and Pop7 are protein subunits of Saccharomyces cerevisiae RNase MRP and RNase P. Here we show that bacterially expressed Pop6 and Pop7 form a soluble heterodimer that binds the RNA components of both RNase MRP and RNase P. Footprint analysis of the interaction between the Pop6/7 heterodimer and the RNase MRP RNA, combined with gel mobility assays, demonstrates that the Pop6/7 complex binds to a conserved region of the P3 domain. Binding of these proteins to the MRP RNA leads to local rearrangement in the structure of the P3 loop and suggests that direct interaction of the Pop6/7 complex with the P3 domain of the RNA components of RNases MRP and P may mediate binding of other protein components. These results suggest a role for a key element in the RNase MRP and RNase P RNAs in protein binding, and demonstrate the feasibility of directly studying RNA-protein interactions in the eukaryotic RNases MRP and P complexes.


Asunto(s)
Endorribonucleasas/metabolismo , ARN de Hongos/metabolismo , Ribonucleasa P/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Bases , Dimerización , Endorribonucleasas/química , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Subunidades de Proteína , Ribonucleasa P/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
18.
Nature ; 448(7150): 157-62, 2007 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-17581590

RESUMEN

The RNA polymerase elongation complex (EC) is both highly stable and processive, rapidly extending RNA chains for thousands of nucleotides. Understanding the mechanisms of elongation and its regulation requires detailed information about the structural organization of the EC. Here we report the 2.5-A resolution structure of the Thermus thermophilus EC; the structure reveals the post-translocated intermediate with the DNA template in the active site available for pairing with the substrate. DNA strand separation occurs one position downstream of the active site, implying that only one substrate at a time can specifically bind to the EC. The upstream edge of the RNA/DNA hybrid stacks on the beta'-subunit 'lid' loop, whereas the first displaced RNA base is trapped within a protein pocket, suggesting a mechanism for RNA displacement. The RNA is threaded through the RNA exit channel, where it adopts a conformation mimicking that of a single strand within a double helix, providing insight into a mechanism for hairpin-dependent pausing and termination.


Asunto(s)
Proteínas Bacterianas/química , ARN Polimerasas Dirigidas por ADN/química , Thermus thermophilus/química , Thermus thermophilus/enzimología , Transcripción Genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ADN Bacteriano/química , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-16582489

RESUMEN

Thermus thermophilus has a multi-path membrane protein, TSecDF, as a single-chain homologue of Escherichia coli SecD and SecF, which form a translocon-associated complex required for efficient preprotein translocation and membrane-protein integration. Here, the cloning, expression in E. coli, purification and crystallization of TSecDF are reported. Overproduced TSecDF was solubilized with dodecylmaltoside, chromatographically purified and crystallized by vapour diffusion in the presence of polyethylene glycol. The crystals yielded a maximum resolution of 4.2 angstroms upon X-ray irradiation, revealing that they belonged to space group P4(3)2(1)2. Attempts were made to improve the diffraction quality of the crystals by combinations of micro-stirring, laser-light irradiation and dehydration, which led to the eventual collection of complete data sets at 3.74 angstroms resolution and preliminary success in the single-wavelength anomalous dispersion analysis. These results provide information that is essential for the determination of the three-dimensional structure of this important membrane component of the protein-translocation machinery.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de la Membrana/química , Thermus thermophilus/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Clonación Molecular , Cristalización , Cartilla de ADN , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas , Difracción de Rayos X
20.
Artículo en Inglés | MEDLINE | ID: mdl-16511259

RESUMEN

The Escherichia coli gene encoding the transcription cleavage factor GreB and the Thermus thermophilus gene encoding the anti-GreA transcription factor Gfh1 were cloned and expressed and the purified proteins were crystallized by the sitting-drop vapor-diffusion technique. The GreB and Gfh1 crystals, which were improved by macroseeding, belong to space group P4(1)2(1)2 (or P4(3)2(1)2), with unit-cell parameters a = b = 148, c = 115.2 A and a = b = 59.3, c = 218.9 A, respectively. Complete diffraction data sets were collected for the GreB and Gfh1 crystals to 2.6 and 2.8 A resolution, respectively. Crystals of the selenomethionine proteins were obtained by microseeding using the native protein crystals and diffract as well as the native ones. The structure determination of these proteins is now in progress.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Thermus thermophilus/química , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/aislamiento & purificación , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Thermus thermophilus/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Elongación Transcripcional/biosíntesis , Factores de Elongación Transcripcional/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA