Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(20)2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37887280

RESUMEN

Mesothelial cells have been shown to have remarkable plasticity towards mesenchymal cell types during development and in disease situations. Here, we have characterized the potential of mesothelial cells to undergo changes toward perivascular cells using an in vitro angiogenesis assay. We demonstrate that GFP-labeled mesothelial cells (GFP-MCs) aligned closely and specifically with endothelial networks formed when human dermal microvascular endothelial cells (HDMECs) were cultured in the presence of VEGF-A165 on normal human dermal fibroblasts (NHDFs) for a 7-day period. The co-culture with GFP-MCs had a positive effect on branch point formation indicating that the cells supported endothelial tube formation. We interrogated the molecular response of the GFP-MCs to the angiogenic co-culture by qRT-PCR and found that the pericyte marker Ng2 was upregulated when the cells were co-cultured with HDMECs on NHDFs, indicating a change towards a perivascular phenotype. When GFP-MCs were cultured on the NHDF feeder layer, they upregulated the epithelial-mesenchymal transition marker Zeb1 and lost their circularity while increasing their size, indicating a change to a more migratory cell type. We analyzed the pericyte-like behavior of the GFP-MCs in a 3D cardiac microtissue (spheroid) with cardiomyocytes, cardiac fibroblasts and cardiac endothelial cells where the mesothelial cells showed alignment with the endothelial cells. These results indicate that mesothelial cells have the potential to adopt a perivascular phenotype and associate with endothelial cells to potentially support angiogenesis.


Asunto(s)
Células Madre Mesenquimatosas , Pericitos , Humanos , Células Endoteliales/metabolismo , Células Epiteliales , Técnicas de Cocultivo
2.
Mol Imaging ; 152016.
Artículo en Inglés | MEDLINE | ID: mdl-27118760

RESUMEN

Bacterial genes involved in the biomineralization of magnetic nanoparticles in magnetotactic bacteria have recently been proposed as reporters for magnetic resonance imaging (MRI). In such systems, the expression of the bacterial genes in mammalian cells purportedly leads to greater concentrations of intracellular iron or the biomineralization of iron oxides, thus leading to an enhancement in relaxation rate that is detectable via MRI. Here, we show that the constitutive expression of the magA gene from Magnetospirillum magnetotacticum is tolerated by human embryonic kidney (HEK) cells but induces a strong toxic effect in murine mesenchymal/stromal cells and kidney-derived stem cells, severely restricting its effective use as a reporter gene for stem cells. Although it has been suggested that magA is involved in iron transport, when expressed in HEK cells, it does not affect the transcription of endogenous genes related to iron homeostasis. Furthermore, the magA-induced enhancement in iron uptake in HEK cells is insignificant, suggesting this gene is a poor reporter even for cell types that can tolerate its expression. We suggest that the use of magA for stem cells should be approached with caution, and its efficacy as a reporter gene requires a careful assessment on a cell-by-cell basis.


Asunto(s)
Proteínas Bacterianas/farmacología , Proteínas de Transporte de Catión/farmacología , Genes Reporteros , Imagen por Resonancia Magnética/métodos , Células Madre Mesenquimatosas/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Medios de Contraste , Células HEK293 , Humanos , Hierro/metabolismo , Células Madre Mesenquimatosas/citología , Ratones
3.
Contrast Media Mol Imaging ; 11(3): 236-44, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26929139

RESUMEN

Magnetic resonance (MR) reporter genes have the potential for tracking the biodistribution and fate of cells in vivo, thus allowing the safety, efficacy and mechanisms of action of cell-based therapies to be comprehensively assessed. In this study, we evaluate the effectiveness of the iron importer transferrin receptor-1 (TfR1) as an MR reporter gene in the model cell line CHO-K1. Overexpression of the TfR1 transgene led to a reduction in the levels of endogenous TfR1 mRNA, but to a 60-fold increase in total TfR1 protein levels. Although the mRNA levels of ferritin heavy chain-1 (Fth1) did not change, Fth1 protein levels increased 13-fold. The concentration of intracellular iron increased significantly, even when cells were cultured in medium that was not supplemented with iron and the amount of iron in the extracellular environment was thus at physiological levels. However, we found that, by supplementing the cell culture medium with ferric citrate, a comparable degree of iron uptake and MR contrast could be achieved in control cells that did not express the TfR1 transgene. Sufficient MR contrast to enable the cells to be detected in vivo following their administration into the midbrain of chick embryos was obtained irrespective of the reporter gene. We conclude that TfR1 is not an effective reporter and that, to track the biodistribution of cells with MR imaging in the short term, it is sufficient to simply culture cells in the presence of ferric citrate. Copyright © 2016 The Authors Contrast Media & Molecular Imaging Published by John Wiley & Sons Ltd.


Asunto(s)
Genes Reporteros , Imagen por Resonancia Magnética/métodos , Receptores de Transferrina/genética , Animales , Células CHO , Embrión de Pollo , Cricetulus , Compuestos Férricos/farmacología , Hierro/metabolismo , Ratones
4.
Int J Mol Sci ; 16(7): 15481-96, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26184159

RESUMEN

Imaging technologies that allow the non-invasive monitoring of stem cells in vivo play a vital role in cell-based regenerative therapies. Recently, much interest has been generated in reporter genes that enable simultaneous monitoring of the anatomical location and viability of cells using magnetic resonance imaging (MRI). Here, we investigate the efficacy of ferritin heavy chain-1 (Fth1) and transferrin receptor-1 (TfR1) as reporters for tracking mesenchymal stem cells. The overexpression of TfR1 was well tolerated by the cells but Fth1 was found to affect the cell's iron homeostasis, leading to phenotypic changes in the absence of iron supplementation and an upregulation in transcript and protein levels of the cell's endogenous transferrin receptor. Neither the sole overexpression of Fth1 nor TfR1 resulted in significant increases in intracellular iron content, although significant differences were seen when the two reporter genes were used in combination, in the presence of high concentrations of iron. The supplementation of the culture medium with iron sources was a more efficient means to obtain contrast than the use of reporter genes, where high levels of intracellular iron were reflected in transverse (T2) relaxation. The feasibility of imaging iron-supplemented cells by MRI is shown using a 3R-compliant chick embryo model.


Asunto(s)
Apoferritinas/genética , Hierro/metabolismo , Receptores de Transferrina/genética , Animales , Apoferritinas/metabolismo , Línea Celular , Embrión de Pollo , Pollos , Genes Reporteros , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Lentivirus/genética , Imagen por Resonancia Magnética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Microscopía Fluorescente , Fenotipo , Receptores de Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...