Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Anal Chim Acta ; 1278: 341725, 2023 Oct 16.
Article En | MEDLINE | ID: mdl-37709466

BACKGROUND: Highly ordered chiral secondary structures as well as multiple (tunable) recognition sites are the keys to success of polysaccharide carbamate-based chiral selectors in enantioseparation science. Hydrogen bonds (HBs), dipole-dipole, and π-π interactions are classically considered the most frequent noncovalent interactions underlying enantioselective recognition with these chiral selectors. Very recently, halogen, chalcogen and π-hole bonds were also identified as interactions working in polysaccharide carbamate-based selectors to promote enantiomer distinction. On the contrary, the function of dispersion interactions in this field was not explored so far. RESULTS: The enantioseparation of chiral ferrocenes featuring chiral axis or chiral plane as stereogenic elements was performed by comparing five polysaccharide carbamate-based chiral columns, with the aim to identify enantioseparation outcomes that could be reasonably determined by dispersion forces, making available a reliable experimental data set for future theoretical studies to confirm the heuristic hypothesis. The effects of mobile phase polarity and temperature on the enantioseparation were considered, and potential recognition sites on analytes and selectors were evaluated by electrostatic potential (V) analysis and molecular dynamics (MD). In this first part, the enantioseparation of 3,3'-dibromo-5,5'-bis-ferrocenylethynyl-4,4'-bipyridine bearing two ferrocenylethynyl units linked to an axially chiral core was performed and compared to that of the analyte featuring the same structural motif with two phenyl groups in place of the ferrocenyl moieties. The results of this study showed the superiority of the ferrocenyl compared to the phenyl group, as a structural element favouring enantiodifferentiation. SIGNIFICANCE AND NOVELTY: Even if dispersion (London) forces have been envisaged acting in liquid-phase enantioseparations, focused studies to explore possible contributions of dispersion forces with polysaccharide carbamate-based selectors are practically missing. This study allowed us to collect experimental information that support the involvement of dispersion forces as contributors to liquid-phase enantioseparation, paving the way to a new picture in this field.

2.
J Chromatogr A ; 1680: 463430, 2022 Sep 13.
Article En | MEDLINE | ID: mdl-36030567

In this paper, the potential of micellar solutions of the anionic surfactant sodium dodecyl sulfate (SDS) as eluents in dispersive micro-solid phase extraction (D-µSPE) using polydopamine-coated magnetite nanoparticles (Fe3O4@PDA NPs) for the extraction and preconcentration of seven basic drugs (bupropion, citalopram, fluoxetine, mianserin, nomifensine, trimipramine, and viloxazine) is explored for the first time (to the best to our knowledge) and compared with conventional hydro-organic eluents. The impact of the sample solution pH, Fe3O4@PDA NPs and PDA coating amounts and extraction time on the extraction efficiency (EE), as well as the composition of the eluent on the overall efficiency (OE) are studied. Under the selected experimental conditions (50 mg of Fe3O4@PDA NPs, 100 µL of 1 M NH3, 5 min of extraction time and 0.15 M SDS at pH 2.6 as eluent), EE and OE values were higher than 90% for all compounds and for the most hydrophobic compounds (trimipramine, fluoxetine and mianserin), respectively. The results shown in this paper demonstrate the suitability of Fe3O4@PDA NPs as a sorbent for the extraction of antidepressants as well as the advantages of using SDS micellar solutions over classic hydro-organic eluents containing methanol, acetonitrile or tetrahydrofuran. Finally, the stability and reusability of the Fe3O4@PDA NPs is proven.


Magnetite Nanoparticles , Antidepressive Agents , Chromatography, High Pressure Liquid/methods , Fluoxetine , Indoles , Magnetic Phenomena , Magnetite Nanoparticles/chemistry , Mianserin , Micelles , Polymers , Sodium Dodecyl Sulfate/chemistry , Solid Phase Extraction/methods , Trimipramine
3.
J Chromatogr A ; 1673: 463073, 2022 Jun 21.
Article En | MEDLINE | ID: mdl-35500389

A comparative study on the retention behaviour and enantioresolution of 54 structurally unrelated neutral and basic compounds using five commercial cellulose-based chiral stationary phases (CSPs) and hydro-organic mobile phases compatible with MS detection is performed. Four phenylcarbamate-type cellulose CSPs (cellulose tris(3,5-dimethylphenylcarbamate), Cell1; cellulose tris(3-chloro-4-methylphenylcarbamate), Cell2; cellulose tris(4-chloro-3-methylphenylcarbamate), Cell4 and cellulose tris(3,5- dichlorophenylcarbamate), Cell5) and one benzoate-type cellulose CSP (cellulose tris(4-methylbenzoate), Cell3) are assayed. Mobile phases consist of binary mixtures of methanol (30-90% MeOH) or acetonitrile (10-98% ACN) with 5 mM ammonium bicarbonate (pH = 8.0). The existence of reversed phase (RPLC) and hydrophilic interaction liquid chromatography (HILIC) retention behaviour domains is explored. In MeOH/H2O mobile phases, for all compounds and CSPs, the typical RPLC retention behaviour is observed. When using ACN/H2O mobile phases, for all compounds in all CSPs (even in the non-chlorinated CSPs) a U-shaped retention behaviour depending on the ACN/H2O content is observed which indicates the coexistence of the RPLC- (< 80% ACN) and HILIC- (∼80-98% ACN) domains. The magnitude of retention changes in both domains is related to the hydrophobicity of the compound as well as to the nature of the CSP. The study of the effect of the nature and concentration of the organic solvent, as well as the nature of the CSP on the enantioresolution reveals that: (i) the use of MeOH/H2O or ACN/H2O greatly affects the enantioselectivity and enantioresolution degree of the chromatographic systems, being, in general, better the results obtained with ACN/H2O mobile phases. (ii) The ACN-RPLC-domain provides much better enantioresolution than HILIC-domain. (iii) Cell2, especially with ACN/H2O mobile phases, is the CSP that allows baseline enantioresolution for a higher number of compounds. (iv) Phenylcarbamate-type CSPs do not offer clear complementary enantioselectivity to that of Cell2. (v) Cell3 is the only CSP that provides marked complementary enantioselectivity to that of Cell2, almost orthogonal in MeOH/H2O mobile phases.


Chromatography, Reverse-Phase , Phenylcarbamates , Cellulose/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Mass Spectrometry , Phenylcarbamates/chemistry , Stereoisomerism
4.
J Chromatogr A ; 1672: 463048, 2022 Jun 07.
Article En | MEDLINE | ID: mdl-35436687

Artificial neural networks (ANN; feed-forward mode) are used to quantitatively estimate the enantioresolution (Rs) in cellulose tris(3,5-dimethylphenylcarbamate) of chiral molecules from their structural information. To the best of our knowledge, for the first time, a dataset of structurally unrelated compounds is modelled using ANN, attempting to approach a model of general applicability. After setting a strategy compatible with the data complexity and their relatively limited size (56 molecules), by prefixing initial ANN inner weights and the validation and cross-validation subsets, the ANN optimisation based on a novel quality indicator calculated from 9 ANN outputs allows selecting a proper (predictive) ANN architecture (a single hidden layer of 7 neurons) and performing a forward-stepwise feature selection process (8 variables are selected). Such relatively simple ANN offers reasonable good general performance in predicting Rs (e.g. validation plot statistics: mean squared error = 0.047 and R = 0.98 and 0.92, for all or just the validation molecules, respectively). Finally, a study of the relative importance of the selected variables, combining the estimation from two approaches, suggests that the surface tension (positive overall contribution to Rs) and the -NHR groups (negative overall contribution to Rs) are found to be the main variables explaining the enantioresolution in the current conditions.


Neural Networks, Computer , Phenylcarbamates , Acetonitriles , Cellulose/analogs & derivatives , Chromatography, High Pressure Liquid , Phenylcarbamates/chemistry , Stereoisomerism
5.
Chirality ; 34(4): 609-619, 2022 04.
Article En | MEDLINE | ID: mdl-35072961

Planar chiral ferrocenes are well-known compounds that have attracted interest for application in synthesis, catalysis, material science, and medicinal chemistry for several decades. In spite of the fact that asymmetric synthesis procedures for obtaining enantiomerically enriched ferrocenes are available, sometimes, the accessible enantiomeric excess of the chiral products is unsatisfactory. In such cases and for resolution of racemic planar chiral ferrocenes, enantioselective high-performance liquid chromatography (HPLC) on polysaccharide-based chiral stationary phases (CSPs) has been used in quite a few literature articles. However, although moderate/high enantioselectivities have been obtained for planar chiral ferrocenes bearing polar substituents, the enantioseparation of derivatives containing halogens, or exclusively alkyl groups, remains rather challenging. In this study, the enantioseparation of ten planar chiral 1,2- and 1,3-disubstituted ferrocenes was explored by using five polysaccharide-based CSPs under multimodal elution conditions. Baseline enantioseparations were achieved for nine analytes with separation factors (α) ranging from 1.20 to 2.92. The presence of π-extended systems in the analyte structure was shown to impact affinity of the most retained enantiomer toward amylose-based selectors, observing retention times higher than 80 min with methanol-containing mobile phases (MPs). Electrostatic potential (V) analysis and molecular dynamics (MD) simulations were used in order to study interaction modes at the molecular level.


Amylose , Polysaccharides , Amylose/chemistry , Chromatography, High Pressure Liquid/methods , Metallocenes , Polysaccharides/chemistry , Stereoisomerism
6.
J Chromatogr A ; 1625: 461281, 2020 Aug 16.
Article En | MEDLINE | ID: mdl-32709332

Polysaccharide-based chiral stationary phases (CSPs) are the most used chiral selectors in HPLC. These CSPs can be used in normal, polar organic and aqueous-organic mobile phases. However, normal and polar organic mobile phases are not adequate for chiral separation of polar compounds, for the analysis of aqueous samples and for MS detection. In these situations, reversed phase conditions, without the usual non-volatile additives incompatible with MS detection, are preferable. Moreover, in most of the reported chiral chromatographic methods, retention is too large for routine work. In this paper, the chiral separation of 53 structurally unrelated compounds is studied using three commercial amylose-based CSPs -coated amylose tris(3,5-dimethylphenylcarbamate) (Am1), coated amylose tris(5-chloro-2-methylphenylcarbamate) (Am2), and immobilised amylose tris(3-chloro-5-methylphenylcarbamate) (Am3)-. Chiral separations are carried out using acetonitrile/ammonium bicarbonate (pH = 8.0) mixtures, reversed mobile phases compatible with MS detection. To provide realistic conditions for routine analysis, maximum retention factors are set to 15. Retention and enantioresolution behaviour of compounds in those CSPs are compared. On the other hand, to compare and describe the resolution ability of these CSPs, 58 structural variables of the compounds are tested to model for the first time a categorical enantioresolution (CRs) for Am1 and Am3 CSPs. Discriminant partial least squares, for one response categorical variable (DPLS1) is used for feature selection, modelling. The final DPLS1 models showed good descriptive ability.


Amylose/chemistry , Chromatography, Reverse-Phase/methods , Mass Spectrometry/methods , Models, Chemical , Chromatography, High Pressure Liquid , Least-Squares Analysis , Regression Analysis , Stereoisomerism
7.
J Chromatogr A ; 1625: 461334, 2020 Aug 16.
Article En | MEDLINE | ID: mdl-32709359

A comprehensive study on the chiral separation of bupivacaine, mepivacaine, prilocaine and propanocaine with eight commercial polysaccharide-based chiral stationary phases (CSPs) in reversed phase conditions compatible with MS detection is performed. Methanol and acetonitrile are used as organic modifiers. Retention and resolution values obtained for each compound in the different CSPs and mobile phases are compared. The polysaccharide-based CSPs tested present different enantioselectivity towards the analytes. From the results, the experimental conditions for determining the enantiomers of bupivacaine, mepivacaine, prilocaine and propanocaine in saline aqueous samples using MS detection are used, for the first time, to perform an enantioselective biodegradability study.


Anesthetics, Local/isolation & purification , Chromatography, Reverse-Phase/methods , Polysaccharides/chemistry , Acetonitriles/chemistry , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Methanol/chemistry , Molecular Weight , Stereoisomerism , Water/chemistry
8.
J Chromatogr A ; 1568: 140-148, 2018 Sep 21.
Article En | MEDLINE | ID: mdl-30001901

The quantification of the enantiomeric fraction (EF) during the biodegradation process is essential for environmental risk assessment. In this paper the enantioselective biodegradation of ibuprofen, IBU, and ketoprofen, KET, two of the drugs most consumed, was evaluated. Biodegradation experiments were performed in batch mode using a minimal salts medium inoculated with an activated sludge (collected from a Valencian Waste Water Treatment Plant) and supplemented with the racemate of each compound. The inoculum activity was verified using fluoxetine as reference compound. The experimental conditions used (analyte concentration and volume of inoculum) were chosen according to OECD guidelines. In parallel, the optical density at 600 nm was measured to control the biomass growth and to connect it with enantioselectivity. Two RPLC methods for chiral separations of IBU and KET using polysaccharides-based stationary phases were developed. Novel calculations and adapted models, using directly the chromatographic peak areas as dependent variable, were proposed to estimate significant parameters related to the biodegradation process: biodegradation (BD) and EF values at given time, half-life times of (R)- and (S)-enantiomers, number of days to reach a complete BD and the minimum EF expected. The modelled BD and EF curves fitted adequately the data (R2 > 0.94). The use of these new equations provided similar results to those obtained using concentration data. However, the use of chromatographic peak areas data, eliminates the uncertainty associated to the use of the calibration curves. The results obtained in this paper indicate that an enantiorecognition towards IBU enantiomers by the microorganisms present in the activated sludge used in this study occurred, being the biodegradation of (R)-IBU higher than that of (S)-IBU. For KET, non-enantioselective biodegradation was observed.


Chromatography, High Pressure Liquid/methods , Ibuprofen/chemistry , Ketoprofen/chemistry , Sewage , Biodegradation, Environmental , Calibration , Ibuprofen/analysis , Ketoprofen/analysis , Kinetics , Stereoisomerism , Wastewater/analysis
9.
Water Res ; 141: 57-64, 2018 Sep 15.
Article En | MEDLINE | ID: mdl-29775773

A great number of available pharmaceuticals are chiral compounds. Although they are usually manufactured as racemic mixtures, they can be enantioselectively biodegraded as a result of microbial processes. In this paper, a biodegradability assay in similar conditions to those recommended in OECD tests of enantiomers of trimeprazine (a phenothiazine employed as a racemate) is carried out. Experiments were performed in batch mode using a minimal salts medium inoculated with an activated sludge (collected from a Valencian Waste Water Treatment Plant, WWTP) and supplemented with the racemate. The concentration of the enantiomers of trimeprazine were monitored by means of a chiral HPLC method using a cellulose-based chiral stationary phase and 0.5 M NaClO4/acetonitrile (60:40, v/v) mobile phases. Experiments were performed at three concentration levels of the racemate. In parallel, the optical density at 600 nm (OD600) was measured to control the biomass growth and to connect it with enantioselectivity. The calculated enantiomeric fractions (EF) offer the first evidence of enantioselective biodegradation of trimeprazine. A simplified Monod equation was used as a curve fitting approach for concentration (S), biodegradation (BD), and for the first time, EF experimental data in order to expand the usefulness of the results. Precision studies on S (repeatability conditions) and, for the first time, EF (intermediate precision conditions) were also performed.


Antipruritics/metabolism , Trimeprazine/metabolism , Water Pollutants, Chemical/metabolism , Antipruritics/chemistry , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Sewage , Stereoisomerism , Trimeprazine/chemistry , Water Pollutants, Chemical/chemistry
...