Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Bioorg Chem ; 147: 107392, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723423

Diabetes mellitus is a metabolic disease characterized by hyperglycemia, which can be counteracted by the inhibition of α-glucosidase (α-Glu) and α-amylase (α-Amy), enzymes responsible for the hydrolysis of carbohydrates. In recent decades, many natural compounds and their bioinspired analogues have been studied as α-Glu and α-Amy inhibitors. However, no studies have been devoted to the evaluation of α-Glu and α-Amy inhibition by the neolignan obovatol (1). In this work, we report the synthesis of 1 and a library of new analogues. The synthesis of these compounds was achieved by implementing methodologies based on: phenol allylation, Claisen/Cope rearrangements, methylation, Ullmann coupling, demethylation, phenol oxidation and Michael-type addition. Obovatol (1) and ten analogues were evaluated for their in vitro inhibitory activity towards α-Glu and α-Amy. Our investigation highlighted that the naturally occurring 1 and four neolignan analogues (11, 22, 26 and 27) were more effective inhibitors than the hypoglycemic drug acarbose (α-Amy: 34.6 µM; α-Glu: 248.3 µM) with IC5O value of 6.2-23.6 µM toward α-Amy and 39.8-124.6 µM toward α-Glu. Docking investigations validated the inhibition outcomes, highlighting optimal compatibility between synthesized neolignans and both the enzymes. Concurrently circular dichroism spectroscopy detected the conformational changes in α-Glu induced by its interaction with the studied neolignans. Detailed studies through fluorescence measurements and kinetics of α-Glu and α-Amy inhibition also indicated that 1, 11, 22, 26 and 27 have the greatest affinity for α-Glu and 1, 11 and 27 for α-Amy. Surface plasmon resonance imaging (SPRI) measurements confirmed that among the compounds studied, the neolignan 27 has the greater affinity for both enzymes, thus corroborating the results obtained by kinetics and fluorescence quenching. Finally, in vitro cytotoxicity of the investigated compounds was tested on human colon cancer cell line (HCT-116). All these results demonstrate that these obovatol-based neolignan analogues constitute promising candidates in the pursuit of developing novel hypoglycemic drugs.


Glycoside Hydrolase Inhibitors , Lignans , alpha-Amylases , alpha-Glucosidases , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Lignans/pharmacology , Lignans/chemistry , Lignans/chemical synthesis , Structure-Activity Relationship , Humans , Molecular Structure , Dose-Response Relationship, Drug , Molecular Docking Simulation , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry
2.
Int J Mol Sci ; 24(9)2023 May 06.
Article En | MEDLINE | ID: mdl-37176088

The well-being of skin and mucous membranes is fundamental for the homeostasis of the body and thus it is imperative to treat any lesion quickly and correctly. In this view, polyphenols might assist and enhance a successful wound healing process by reducing the inflammatory cascade and the production of free radicals. However, they suffer from disadvantageous physico-chemical properties, leading to restricted clinical use. In this work, a complex mixture of PEGylated lipid, Glyceryl monoester, 18-ß-Glycyrrhetinic Acid and Menthol was designed to entrap Resveratrol (RSV) as the active ingredient and further produce lipid nanoparticles (LNPs) by homogenization followed by high-frequency sonication. The nanosystem was properly characterized in terms of particle size (DLS, SEM), zeta potential, drug loading, antioxidant power (DPPH), release behaviour, cytocompatibility, wound healing and antibiofilm properties. The optimized lipid mixture was homogeneous, melted at 57-61 °C and encapsulated amorphous RSV (4.56 ± 0.04% w/w). The RSV-loaded LNPs were almost monodispersed (PDI: 0.267 ± 0.010), with nanometric size (162.86 ± 3.12 nm), scavenger properties and suitable DR% and LE% values (96.82 ± 1.34% and 95.17 ± 0.25%, respectively). The release studies were performed to simulate the wound conditions: 1-octanol to mimic the lipophilic domains of biological tissues (where the First Order kinetic was observed) and citrate buffer pH 5.5 according to the inflammatory wound exudate (where the Korsmeyer-Peppas kinetic was followed). The biological and microbiological evaluations highlighted fibroblast proliferation and migration effects as well as antibiofilm properties at extremely low doses (LNPs: 22 µg/mL, corresponding to RSV 5 µM). Thus, the proposed multicomponent LNPs could represent a valuable RSV delivery platform for wound healing purposes.


Liposomes , Nanoparticles , Resveratrol/pharmacology , Liposomes/pharmacology , Nanoparticles/chemistry , Lipids/chemistry , Cell Proliferation , Fibroblasts , Biofilms , Particle Size
3.
Eur J Med Chem ; 253: 115339, 2023 May 05.
Article En | MEDLINE | ID: mdl-37054631

Pyrrolomycins (PMs) are a family of naturally occurring antibiotic agents, isolated from the fermentation broth of Actinosporangium and Streptomyces species. Pursuing our studies on pyrrolomycins, we performed the total synthesis of the F-series pyrrolomycins (1-4) by microwave-assisted synthesis (MAOS), thus obtaining the title compounds in excellent yields (63-69%). Considering that there is no evidence so far of the anticancer effect of this class of compounds, we investigated PMs for their antiproliferative activity against HCT116 and MCF-7 cancer cell lines. PMs showed anticancer activity at submicromolar level with a minimal effect on normal epithelial cell line (hTERT RPE-1), and they were able to induce several morphological changes including elongated cells, cytoplasm vacuolization, long and thin filopodia as well as the appearance of tunneling nanotubes (TNTs). These data suggest that PMs could act by impairing the cell membranes and the cytoskeleton organization, with subsequent increase of ROS generation and the activation of different forms of non-apoptotic cell death.


Antineoplastic Agents , Streptomyces , Humans , Microwaves , Streptomyces/metabolism , Fermentation , MCF-7 Cells
...