Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JNCI Cancer Spectr ; 8(3)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38730548

RESUMEN

BACKGROUND: Traditional constraints specify that 700 cc of liver should be spared a hepatotoxic dose when delivering liver-directed radiotherapy to reduce the risk of inducing liver failure. We investigated the role of single-photon emission computed tomography (SPECT) to identify and preferentially avoid functional liver during liver-directed radiation treatment planning in patients with preserved liver function but limited functional liver volume after receiving prior hepatotoxic chemotherapy or surgical resection. METHODS: This phase I trial with a 3 + 3 design evaluated the safety of liver-directed radiotherapy using escalating functional liver radiation dose constraints in patients with liver metastases. Dose-limiting toxicities were assessed 6-8 weeks and 6 months after completing radiotherapy. RESULTS: All 12 patients had colorectal liver metastases and received prior hepatotoxic chemotherapy; 8 patients underwent prior liver resection. Median computed tomography anatomical nontumor liver volume was 1584 cc (range = 764-2699 cc). Median SPECT functional liver volume was 1117 cc (range = 570-1928 cc). Median nontarget computed tomography and SPECT liver volumes below the volumetric dose constraint were 997 cc (range = 544-1576 cc) and 684 cc (range = 429-1244 cc), respectively. The prescription dose was 67.5-75 Gy in 15 fractions or 75-100 Gy in 25 fractions. No dose-limiting toxicities were observed during follow-up. One-year in-field control was 57%. One-year overall survival was 73%. CONCLUSION: Liver-directed radiotherapy can be safely delivered to high doses when incorporating functional SPECT into the radiation treatment planning process, which may enable sparing of lower volumes of liver than traditionally accepted in patients with preserved liver function. TRIAL REGISTRATION: NCT02626312.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Hígado , Radioterapia Guiada por Imagen , Tomografía Computarizada de Emisión de Fotón Único , Humanos , Masculino , Femenino , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Hígado/diagnóstico por imagen , Hígado/efectos de la radiación , Radioterapia Guiada por Imagen/métodos , Neoplasias Colorrectales/radioterapia , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/diagnóstico por imagen , Tamaño de los Órganos , Dosificación Radioterapéutica , Tomografía Computarizada por Rayos X , Planificación de la Radioterapia Asistida por Computador/métodos , Adulto
2.
Int J Part Ther ; 11: 100019, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38757077

RESUMEN

Purpose: Radiotherapy delivery in the definitive management of lower gastrointestinal (LGI) tract malignancies is associated with substantial risk of acute and late gastrointestinal (GI), genitourinary, dermatologic, and hematologic toxicities. Advanced radiation therapy techniques such as proton beam therapy (PBT) offer optimal dosimetric sparing of critical organs at risk, achieving a more favorable therapeutic ratio compared with photon therapy. Materials and Methods: The international Particle Therapy Cooperative Group GI Subcommittee conducted a systematic literature review, from which consensus recommendations were developed on the application of PBT for LGI malignancies. Results: Eleven recommendations on clinical indications for which PBT should be considered are presented with supporting literature, and each recommendation was assessed for level of evidence and strength of recommendation. Detailed technical guidelines pertaining to simulation, treatment planning and delivery, and image guidance are also provided. Conclusion: PBT may be of significant value in select patients with LGI malignancies. Additional clinical data are needed to further elucidate the potential benefits of PBT for patients with anal cancer and rectal cancer.

3.
Precis Radiat Oncol ; 7(1): 15-26, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37868341

RESUMEN

EBT-XD model of Gafchromic™ films has a broader optimal dynamic dose range, up to 40 Gy, compared to its predecessor models. This characteristic has made EBT-XD films suitable for high-dose applications such as stereotactic body radiotherapy and stereotactic radiosurgery, as well as ultra-high dose rate FLASH radiotherapy. The purpose of the current study was to characterize the dependence of EBT-XD film response on linear energy transfer (LET) and dose rate of therapeutic protons from a synchrotron. A clinical spot-scanning proton beam was used to study LET dependence at three dose-averaged LET (LETd) values of 1.0 keV/µm, 3.6 keV/µm, and 7.6 keV/µm. A research proton beamline was used to study dose rate dependence at 150 Gy/second in the FLASH mode and 0.3 Gy/second in the non-FLASH mode. Film response data from LETd values of 0.9 keV/µm and 9.0 keV/µm of the proton FLASH beam were also compared. Film response data from a clinical 6 MV photon beam were used as a reference. Both gray value method and optical density (OD) method were used in film calibration. Calibration results using a specific OD calculation method and a generic OD calculation method were compared. The four-parameter NIH Rodbard function and three-parameter rational function were compared in fitting the calibration curves. Experimental results showed that the response of EBT-XD film is proton LET dependent but independent of dose rate. Goodness-of-fit analysis showed that using the NIH Rodbard function is superior for both protons and photons. Using the "specific OD + NIH Rodbard function" method for EBT-XD film calibration is recommended.

4.
Adv Radiat Oncol ; 8(4): 101164, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798731

RESUMEN

Purpose: To determine the dosimetric limitations of daily online adaptive pancreas stereotactic body radiation treatment by using an automated dose escalation approach. Methods and Materials: We collected 108 planning and daily computed tomography (CT) scans from 18 patients (18 patients × 6 CT scans) who received 5-fraction pancreas stereotactic body radiation treatment at MD Anderson Cancer Center. Dose metrics from the original non-dose-escalated clinical plan (non-DE), the dose-escalated plan created on the original planning CT (DE-ORI), and the dose-escalated plan created on daily adaptive radiation therapy CT (DE-ART) were analyzed. We developed a dose-escalation planning algorithm within the radiation treatment planning system to automate the dose-escalation planning process for efficiency and consistency. In this algorithm, the prescription dose of the dose-escalation plan was escalated before violating any organ-at-risk (OAR) dose constraint. Dose metrics for 3 targets (gross target volume [GTV], tumor vessel interface [TVI], and dose-escalated planning target volume [DE-PTV]) and 9 OARs (duodenum, large bowel, small bowel, stomach, spinal cord, kidneys, liver, and skin) for the 3 plans were compared. Furthermore, we evaluated the effectiveness of the online adaptive dose-escalation planning process by quantifying the effect of the interfractional dose distribution variations among the DE-ART plans. Results: The median D95% dose to the GTV/TVI/DE-PTV was 33.1/36.2/32.4 Gy, 48.5/50.9/40.4 Gy, and 53.7/58.2/44.8 Gy for non-DE, DE-ORI, and DE-ART, respectively. Most OAR dose constraints were not violated for the non-DE and DE-ART plans, while OAR constraints were violated for the majority of the DE-ORI patients due to interfractional motion and lack of adaptation. The maximum difference per fraction in D95%, due to interfractional motion, was 2.5 ± 2.7 Gy, 3.0 ± 2.9 Gy, and 2.0 ± 1.8 Gy for the TVI, GTV, and DE-PTV, respectively. Conclusions: Most patients require daily adaptation of the radiation planning process to maximally escalate delivered dose to the pancreatic tumor without exceeding OAR constraints. Using our automated approach, patients can receive higher target dose than standard of care without violating OAR constraints.

5.
Int J Radiat Oncol Biol Phys ; 111(5): 1298-1309, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34400267

RESUMEN

PURPOSE: To estimate the effects of interfractional anatomic changes on dose to organs at risk (OARs) and tumors, as measured with cone beam computed tomography (CBCT) image guidance for pancreatic stereotactic body radiation therapy. METHODS AND MATERIALS: We evaluated 11 patients with pancreatic cancer whom were treated with stereotactic body radiation therapy (33-40 Gy in 5 fractions) using daily CT-on-rails (CTOR) image guidance immediately before treatment with breath-hold motion management. CBCT alignment was simulated in the treatment planning software by aligning the original planning CT to each fractional CTOR image set via fiducial markers. CTOR data sets were used to calculate fractional doses after alignment by applying the rigid shift of the planning CT and CTOR image sets to the planning treatment isocenter and recalculating the fractional dose. Accumulated dose to the gross tumor volume (GTV), tumor vessel interface, duodenum, small bowel, and stomach were calculated by summing the 5 fractional absolute dose-volume histograms into a single dose-volume histogram for comparison with the original planned dose. RESULTS: Four patients had a GTV D100% of at least 1.5 Gy less than the fractional planned value in several fractions; 4 patients had fractional underestimation of duodenum dose by 1.0 Gy per fraction. The D1.0 cm3 <35 Gy constraint was violated for at least 1 OAR in 3 patients, with either the duodenum (n = 2) or small bowel (n = 1) D1.0 cm3 being higher on the accumulated dose distribution (P = .01). D100% was significantly lower according to accumulated dose GTV (P = .01) and tumor vessel interface (P = .02), with 4 and 2 patients having accumulated D100%  ≥4 Gy lower than the planned value for the GTV and tumor vessel interface, respectively. CONCLUSIONS: For some patients, CBCT image guidance based on fiducial alignment may cause large dosimetric uncertainties for OARs and target structures, according to accumulated dose.


Asunto(s)
Radiocirugia , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada de Haz Cónico , Humanos , Páncreas , Radiometría , Dosificación Radioterapéutica
6.
Phys Med Biol ; 55(23): 7097-106, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21076194

RESUMEN

In scanned-beam proton therapy, the beam spot properties, such as the lateral and longitudinal size and the minimum achievable range, are influenced by beam optics, scattering media and drift spaces in the treatment unit. Currently available spot scanning systems offer few options for adjusting these properties. We investigated a method for adjusting the lateral and longitudinal spot size that utilizes downstream plastic pre-absorbers located near a water phantom. The spot size adjustment was characterized using Monte Carlo simulations of a modified commercial scanned-beam treatment head. Our results revealed that the pre-absorbers can be used to reduce the lateral full width at half maximum (FWHM) of dose spots in water by up to 14 mm, and to increase the longitudinal extent from about 1 mm to 5 mm at residual ranges of 4 cm and less. A large factor in manipulating the lateral spot sizes is the drift space between the pre-absorber and the water phantom. Increasing the drift space from 0 cm to 15 cm leads to an increase in the lateral FWHM from 2.15 cm to 2.87 cm, at a water-equivalent depth of 1 cm. These findings suggest that this spot adjustment method may improve the quality of spot-scanned proton treatments.


Asunto(s)
Terapia de Protones , Radioterapia/métodos , Absorción , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Método de Montecarlo , Neutrones/efectos adversos , Protones/efectos adversos , Radioterapia/efectos adversos
7.
Med Phys ; 37(9): 4960-70, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20964215

RESUMEN

PURPOSE: The purposes of this study were to validate a discrete spot scanning proton beam nozzle using the Monte Carlo (MC) code MCNPX and use the MC validated model to investigate the effects of a low-dose envelope, which surrounds the beam's central axis, on measurements of integral depth dose (IDD) profiles. METHODS: An accurate model of the discrete spot scanning beam nozzle from The University of Texas M. D. Anderson Cancer Center (Houston, Texas) was developed on the basis of blueprints provided by the manufacturer of the nozzle. The authors performed simulations of single proton pencil beams of various energies using the standard multiple Coulomb scattering (MCS) algorithm within the MCNPX source code and a new MCS algorithm, which was implemented in the MCNPX source code. The MC models were validated by comparing calculated in-air and in-water lateral profiles and percentage depth dose profiles for single pencil beams with their corresponding measured values. The models were then further tested by comparing the calculated and measured three-dimensional (3-D) dose distributions. Finally, an IDD profile was calculated with different scoring radii to determine the limitations on the use of commercially available plane-parallel ionization chambers to measure IDD. RESULTS: The distance to agreement, defined as the distance between the nearest positions of two equivalent distributions with the same value of dose, between measured and simulated ranges was within 0.13 cm for both MCS algorithms. For low and intermediate pencil beam energies, the MC simulations using the standard MCS algorithm were in better agreement with measurements. Conversely, the new MCS algorithm produced better results for high-energy single pencil beams. The IDD profile calculated with cylindrical tallies with an area equivalent to the area of the largest commercially available ionization chamber showed up to 7.8% underestimation of the integral dose in certain depths of the IDD profile. CONCLUSIONS: The authors conclude that a combination of MCS algorithms is required to accurately reproduce experimental data of single pencil beams and 3-D dose distributions for the scanning beam nozzle. In addition, the MC simulations showed that because of the low-dose envelope, ionization chambers with radii as large as 4.08 cm are insufficient to accurately measure IDD profiles for a 221.8 MeV pencil beam in the scanning beam nozzle.


Asunto(s)
Método de Montecarlo , Terapia de Protones , Radioterapia/métodos , Fantasmas de Imagen , Radiometría , Dosificación Radioterapéutica , Reproducibilidad de los Resultados
8.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 5): 798-804, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11976491

RESUMEN

The type I 3-dehydroquinate dehydratase (DHQase) which catalyses the reversible dehydration of 3-dehydroquinic acid to 3-dehydroshikimic acid is involved in the shikimate pathway for the biosynthesis of aromatic compounds. The shikimate pathway is absent in mammals, which makes structural information about DHQase vital for the rational design of antimicrobial drugs and herbicides. The crystallographic structure of the type I DHQase from Salmonella typhi has now been determined for the native form at 1.78 A resolution (R = 19.9%; R(free) = 24.7%). The structure of the modified enzyme to which the product has been covalently bound has also been determined but in a different crystal form (2.1 A resolution; R = 17.7%; R(free) = 24.5%). An analysis of the three available crystal forms has provided information about the physiological dimer interface. The enzyme relies upon the closure of a lid-like loop to complete its active site. As the lid-loop tends to stay in the closed position, dimerization appears to play a role in biasing the arrangement of the loop towards its open position, thus facilitating substrate access.


Asunto(s)
Hidroliasas/química , Hidroliasas/metabolismo , Salmonella typhi/enzimología , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Dimerización , Enlace de Hidrógeno , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...