Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 122
1.
Am J Transplant ; 24(4): 577-590, 2024 Apr.
Article En | MEDLINE | ID: mdl-37977230

Growing evidence implicates complement in the pathogenesis of primary graft dysfunction (PGD). We hypothesized that early complement activation postreperfusion could predispose to severe PGD grade 3 (PGD-3) at 72 hours, which is associated with worst posttransplant outcomes. Consecutive lung transplant patients (n = 253) from January 2018 through June 2023 underwent timed open allograft biopsies at the end of cold ischemia (internal control) and 30 minutes postreperfusion. PGD-3 at 72 hours occurred in 14% (35/253) of patients; 17% (44/253) revealed positive C4d staining on postreperfusion allograft biopsy, and no biopsy-related complications were encountered. Significantly more patients with PGD-3 at 72 hours had positive C4d staining at 30 minutes postreperfusion compared with those without (51% vs 12%, P < .001). Conversely, patients with positive C4d staining were significantly more likely to develop PGD-3 at 72 hours (41% vs 8%, P < .001) and experienced worse long-term outcomes. In multivariate logistic regression, positive C4d staining remained highly predictive of PGD-3 (odds ratio 7.92, 95% confidence interval 2.97-21.1, P < .001). Hence, early complement deposition in allografts is highly predictive of PGD-3 at 72 hours. Our data support future studies to evaluate the role of complement inhibition in patients with early postreperfusion complement activation to mitigate PGD and improve transplant outcomes.


Lung Transplantation , Primary Graft Dysfunction , Humans , Primary Graft Dysfunction/etiology , Complement C4b , Retrospective Studies , Lung , Complement System Proteins , Lung Transplantation/adverse effects , Allografts , Graft Rejection/etiology , Graft Rejection/pathology
2.
Nature ; 623(7987): 616-624, 2023 Nov.
Article En | MEDLINE | ID: mdl-37938773

Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction1. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity1,2. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.


Arthritis, Rheumatoid , Humans , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Cytokines/metabolism , Inflammation/complications , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Synovial Membrane/pathology , T-Lymphocytes/immunology , B-Lymphocytes/immunology , Genetic Predisposition to Disease/genetics , Phenotype , Single-Cell Gene Expression Analysis
3.
J Neuroinflammation ; 20(1): 238, 2023 Oct 19.
Article En | MEDLINE | ID: mdl-37858232

BACKGROUND: Neovascular age-related macular degeneration causes vision loss from destructive angiogenesis, termed choroidal neovascularization (CNV). Cx3cr1-/- mice display alterations in non-classical monocytes and microglia with increased CNV size, suggesting that non-classical monocytes may inhibit CNV formation. NR4A1 is a transcription factor that is necessary for maturation of non-classical monocytes from classical monocytes. While Nr4a1-/- mice are deficient in non-classical monocytes, results are confounded by macrophage hyper-activation. Nr4a1se2/se2 mice lack a transcriptional activator, resulting in non-classical monocyte loss without macrophage hyper-activation. MAIN BODY: We subjected Nr4a1-/- and Nr4a1se2/se2 mice to the laser-induced CNV model and performed multi-parameter flow cytometry. We found that both models lack non-classical monocytes, but only Nr4a1-/- mice displayed increased CNV area. Additionally, CD11c+ macrophages were increased in Nr4a1-/- mice. Single-cell transcriptomic analysis uncovered that CD11c+ macrophages were enriched from Nr4a1-/- mice and expressed a pro-angiogenic transcriptomic profile that was disparate from prior reports of macrophage hyper-activation. CONCLUSIONS: These results suggest that non-classical monocytes are dispensable during CNV, and NR4A1 deficiency results in increased recruitment of pro-angiogenic macrophages.


Choroidal Neovascularization , Macular Degeneration , Animals , Mice , Choroidal Neovascularization/genetics , Disease Models, Animal , Macrophages/physiology , Macular Degeneration/genetics , Mice, Inbred C57BL , Microglia , Monocytes
4.
Sci Rep ; 13(1): 14104, 2023 08 29.
Article En | MEDLINE | ID: mdl-37644108

Macrophages (MΦ) play a role in neonatal etiologies of obstructive cholestasis, however, the role for precise MΦ subsets remains poorly defined. We developed a neonatal murine model of bile duct ligation (BDL) to characterize etiology-specific differences in neonatal cholestatic MΦ polarization. Neonatal BDL surgery was performed on female BALB/c mice at 10 days of life (DOL) with sham laparotomy as controls. Comparison was made to the Rhesus Rotavirus (RRV)-induced murine model of biliary atresia (BA). Evaluation of changes at day 7 after surgery (BDL and sham groups) and murine BA (DOL14) included laboratory data, histology (H&E, anti-CD45 and anti-CK19 staining), flow cytometry of MΦ subsets by MHCII and Ly6c expression, and single cell RNA-sequencing (scRNA-seq) analysis. Neonatal BDL achieved a 90% survival rate; mice had elevated bile acids, bilirubin, and alanine aminotransferase (ALT) versus controls (p < 0.05 for all). Histology demonstrated hepatocellular injury, CD45+ portal infiltrate, and CK19+ bile duct proliferation in neonatal BDL. Comparison to murine BA showed increased ALT in neonatal BDL despite no difference in histology Ishak score. Neonatal BDL had significantly lower MHCII-Ly6c+ MΦ versus murine BA, however, scRNA-seq identified greater etiology-specific MΦ heterogeneity with increased endocytosis in neonatal BDL MΦ versus cellular killing in murine BA MΦ. We generated an innovative murine model of neonatal obstructive cholestasis with low mortality. This model enabled comparison to murine BA to define etiology-specific cholestatic MΦ function. Further comparisons to human data may enable development of immune modulatory therapies to improve patient outcomes.


Biliary Atresia , Cholestasis , Humans , Female , Animals , Mice , Disease Models, Animal , Bile Ducts/surgery , Alanine Transaminase
5.
bioRxiv ; 2023 Jul 04.
Article En | MEDLINE | ID: mdl-37461737

Rheumatoid arthritis (RA) is a systemic autoimmune disease with currently no universally highly effective prevention strategies. Identifying pathogenic immune phenotypes in 'At-Risk' populations prior to clinical disease onset is crucial to establishing effective prevention strategies. Here, we applied mass cytometry to deeply characterize the immunophenotypes in blood from At-Risk individuals identified through the presence of serum antibodies to citrullinated protein antigens (ACPA) and/or first-degree relative (FDR) status (n=52), as compared to established RA (n=67), and healthy controls (n=48). We identified significant cell expansions in At-Risk individuals compared with controls, including CCR2+CD4+ T cells, T peripheral helper (Tph) cells, type 1 T helper cells, and CXCR5+CD8+ T cells. We also found that CD15+ classical monocytes were specifically expanded in ACPA-negative FDRs, and an activated PAX5 low naïve B cell population was expanded in ACPA-positive FDRs. Further, we developed an "RA immunophenotype score" classification method based on the degree of enrichment of cell states relevant to established RA patients. This score significantly distinguished At-Risk individuals from controls. In all, we systematically identified activated lymphocyte phenotypes in At-Risk individuals, along with immunophenotypic differences among both ACPA+ and ACPA-FDR At-Risk subpopulations. Our classification model provides a promising approach for understanding RA pathogenesis with the goal to further improve prevention strategies and identify novel therapeutic targets.

6.
Cell Rep ; 42(5): 112513, 2023 05 30.
Article En | MEDLINE | ID: mdl-37204925

Monocytes are abundant immune cells that infiltrate inflamed organs. However, the majority of monocyte studies focus on circulating cells, rather than those in tissue. Here, we identify and characterize an intravascular synovial monocyte population resembling circulating non-classical monocytes and an extravascular tissue-resident monocyte-lineage cell (TR-MC) population distinct in surface marker and transcriptional profile from circulating monocytes, dendritic cells, and tissue macrophages that are conserved in rheumatoid arthritis (RA) patients. TR-MCs are independent of NR4A1 and CCR2, long lived, and embryonically derived. TR-MCs undergo increased proliferation and reverse diapedesis dependent on LFA1 in response to arthrogenic stimuli and are required for the development of RA-like disease. Moreover, pathways that are activated in TR-MCs at the peak of arthritis overlap with those that are downregulated in LFA1-/- TR-MCs. These findings show a facet of mononuclear cell biology that could be imperative to understanding tissue-resident myeloid cell function in RA.


Arthritis, Rheumatoid , Monocytes , Humans , Monocytes/metabolism , Synovial Membrane , Inflammation/metabolism
7.
JCI Insight ; 8(7)2023 04 10.
Article En | MEDLINE | ID: mdl-36821388

Patients with neovascular AMD (nAMD) suffer vision loss from destructive angiogenesis, termed choroidal neovascularization (CNV). Macrophages are found in CNV lesions from patients with nAMD. Additionally, Ccr2-/- mice, which lack classical monocyte-derived macrophages, show reduced CNV size. However, macrophages are highly diverse cells that can perform multiple functions. We performed single-cell RNA-Seq on immune cells from WT and Ccr2-/- eyes to uncover macrophage heterogeneity during the laser-induced CNV mouse model of nAMD. We identified 12 macrophage clusters, including Spp1+ macrophages. Spp1+ macrophages were enriched from WT lasered eyes and expressed a proangiogenic transcriptome via multiple pathways, including vascular endothelial growth factor signaling, endothelial cell sprouting, cytokine signaling, and fibrosis. Additionally, Spp1+ macrophages expressed the marker CD11c, and CD11c+ macrophages were increased by laser and present in CNV lesions. Finally, CD11c+ macrophage depletion reduced CNV size by 40%. These findings broaden our understanding of ocular macrophage heterogeneity and implicate CD11c+ macrophages as potential therapeutic targets for treatment-resistant patients with nAMD.


Choroidal Neovascularization , Wet Macular Degeneration , Animals , Mice , Angiogenesis Inhibitors/therapeutic use , Choroidal Neovascularization/drug therapy , Macrophages/metabolism , Vascular Endothelial Growth Factor A/metabolism , Visual Acuity , Wet Macular Degeneration/pathology , CD11c Antigen/metabolism
8.
Arthritis Rheumatol ; 75(4): 595-608, 2023 04.
Article En | MEDLINE | ID: mdl-36281773

OBJECTIVE: Patients with diffuse cutaneous systemic sclerosis (dcSSc) display a complex clinical phenotype. Transcriptional profiling of whole blood or tissue from patients are affected by changes in cellular composition that drive gene expression and an inability to detect minority cell populations. We undertook this study to focus on the 2 main subtypes of circulating monocytes, classical monocytes (CMs) and nonclassical monocytes (NCMs) as a biomarker of SSc disease severity. METHODS: SSc patients were recruited from the Prospective Registry for Early Systemic Sclerosis. Clinical data were collected, as well as peripheral blood for isolation of CMs and NCMs. Age-, sex-, and race-matched healthy volunteers were recruited as controls. Bulk macrophages were isolated from the skin in a separate cohort. All samples were assayed by RNA sequencing (RNA-seq). RESULTS: We used an unbiased approach to cluster patients into 3 groups (groups A-C) based on the transcriptional signatures of CMs relative to controls. Each group maintained their characteristic transcriptional signature in NCMs. Genes up-regulated in group C demonstrated the highest expression compared to the other groups in SSc skin macrophages, relative to controls. Patients from groups B and C exhibited worse lung function than group A, although there was no difference in SSc skin disease at baseline, relative to controls. We validated our approach by applying our group classifications to published bulk monocyte RNA-seq data from SSc patients, and we found that patients without skin disease were most likely to be classified as group A. CONCLUSION: We are the first to show that transcriptional signatures of CMs and NCMs can be used to unbiasedly stratify SSc patients and correlate with disease activity outcome measures.


Scleroderma, Diffuse , Scleroderma, Localized , Scleroderma, Systemic , Humans , Monocytes/metabolism , Scleroderma, Systemic/metabolism , Scleroderma, Diffuse/genetics , Scleroderma, Diffuse/diagnosis , Macrophages/metabolism , Biomarkers , Skin/metabolism
9.
Nat Aging ; 2(12): 1191-1206, 2022 12.
Article En | MEDLINE | ID: mdl-37118543

Aging is among the most important risk factors for morbidity and mortality. To contribute toward a molecular understanding of aging, we analyzed age-resolved transcriptomic data from multiple studies. Here, we show that transcript length alone explains most transcriptional changes observed with aging in mice and humans. We present three lines of evidence supporting the biological importance of the uncovered transcriptome imbalance. First, in vertebrates the length association primarily displays a lower relative abundance of long transcripts in aging. Second, eight antiaging interventions of the Interventions Testing Program of the National Institute on Aging can counter this length association. Third, we find that in humans and mice the genes with the longest transcripts enrich for genes reported to extend lifespan, whereas those with the shortest transcripts enrich for genes reported to shorten lifespan. Our study opens fundamental questions on aging and the organization of transcriptomes.


Aging , Transcriptome , Humans , Animals , Mice , Transcriptome/genetics , Aging/genetics , Longevity/genetics , Gene Expression Profiling , Risk Factors
10.
Neurogastroenterol Motil ; 34(7): e14284, 2022 07.
Article En | MEDLINE | ID: mdl-34709690

BACKGROUND: Although esophageal dysmotility is common in systemic sclerosis (SSc)/scleroderma, little is known regarding the pathophysiology of motor abnormalities driving reflux severity and dysphagia. This study aimed to assess primary and secondary peristalsis in SSc using a comprehensive esophageal motility assessment applying high-resolution manometry (HRM) and functional luminal imaging probe (FLIP) Panometry. METHODS: A total of 32 patients with scleroderma (28 female; ages 38-77; 20 limited SSc, 12 diffuse SSc) completed FLIP Panometry and HRM. Secondary peristalsis, i.e., contractile responses (CR), was classified on FLIP Panometry by pattern of contractility as normal (NCR), borderline (BCR), impaired/disordered (IDCR), or absent (ACR). Primary peristalsis on HRM was assessed according to the Chicago classification. RESULTS: The manometric diagnoses were 56% (n = 18) absent contractility, 22% (n = 7) ineffective esophageal motility (IEM), and 22% (n = 7) normal motility. Secondary peristalsis (CRs) included 38% (n = 12) ACR, 38% (n = 12) IDCR, 19% (n = 6) BCR, and 15% (n = 5) NCR. The median (IQR) esophagogastric junction (EGJ) distensibility index (DI) was 5.8 mm2 /mmHg (4.8-10.1) mm2 /mmHg; EGJ-DI was >8.0 mm2 /mmHg in 31%, and >2.0 mm2 /mmHg in 100% of patients. Among 18 patients with absent contractility on HRM, 11 had ACR, 5 had IDCR, and 2 had BCR. Among 7 patients with IEM, 1 had ACR, 5 had IDCR, and 1 NCR. All of the patients with normal peristalsis had NCR or BCR. CONCLUSIONS: This was the first study assessing combined HRM and FLIP Panometry in a cohort of SSc patients, which demonstrated heterogeneity in primary and secondary peristalsis. This complementary approach facilitates characterizing esophageal function in SSc, although future study to examine clinical outcomes remains necessary.


Esophageal Motility Disorders , Scleroderma, Systemic , Adult , Aged , Female , Humans , Manometry/methods , Middle Aged , Peristalsis , Scleroderma, Systemic/complications
11.
Sci Rep ; 11(1): 18084, 2021 09 10.
Article En | MEDLINE | ID: mdl-34508129

Neovascular age-related macular degeneration (nAMD) commonly causes vision loss from aberrant angiogenesis, termed choroidal neovascularization (CNV). Interleukin-6 (IL6) is a pro-inflammatory and pro-angiogenic cytokine that is correlated with AMD progression and nAMD activity. We hypothesize that anti-IL6 therapy is a potential nAMD therapeutic. We found that IL6 levels were increased after laser injury and expressed by macrophages. Il6-deficiency decreased laser-induced CNV area and exogenous IL6 addition increased choroidal sprouting angiogenesis. Il6-null mice demonstrated equally increased macrophage numbers as wildtype mice. At steady state, IL6R expression was detected on peripheral blood and ocular monocytes. After laser injury, the number of IL6R+Ly6C+ monocytes in blood and IL6R+ macrophages in the eye were increased. In human choroid, macrophages expressed IL6, IL6R, and IL6ST. Furthermore, IL6R+ macrophages displayed a transcriptional profile consistent with STAT3 (signal transducer and activator of transcription 3) activation and angiogenesis. Our data show that IL6 is both necessary and sufficient for choroidal angiogenesis. Macrophage-derived IL6 may stimulate choroidal angiogenesis via classical activation of IL6R+ macrophages, which then stimulate angiogenesis. Targeting IL6 or the IL6R could be an effective adjunctive therapy for treatment-resistant nAMD patients.


Choroid/blood supply , Choroid/metabolism , Choroidal Neovascularization/etiology , Choroidal Neovascularization/metabolism , Interleukin-6/metabolism , Macrophages/metabolism , Animals , Biomarkers , Choroid/pathology , Choroidal Neovascularization/pathology , Choroidal Neovascularization/therapy , Disease Models, Animal , Disease Susceptibility , Humans , Mice , Monocytes/metabolism , Receptors, Interleukin-6/metabolism
12.
Sci Rep ; 11(1): 17254, 2021 08 26.
Article En | MEDLINE | ID: mdl-34446787

Age-related macular degeneration (AMD) is genetically associated with complement. Dendritic cells (DCs) play key roles during innate and adaptive immunity, and express complement components and their receptors. We investigated ocular DC heterogeneity and the role of DCs in the laser-induced choroidal neovascularization (CNV) model. In order to determine the function of DCs, we used two models of DC deficiency: the Flt3-/- and Flt3l-/- mouse. We identified three types of ocular DCs: plasmacytoid DC, classical DC-1, and classical DC-2. At steady-state, classical DCs were found in the iris and choroid but were not detectable in the retina. Plasmacytoid DCs existed at very low levels in iris, choroid, and retina. After laser injury, the number of each DC subset was up-regulated in the choroid and retina. In Flt3-/- mice, we found reduced numbers of classical DCs at steady-state, but each DC subset equally increased after laser injury between wildtype and Flt3-/- mice. In Flt3l-/- mice, each DC subsets was severely reduced after laser injury. Neither Flt3-/- or Flt3l-/- mice demonstrated reduced CNV area compared to wildtype mice. DCs do not play any significant role during the laser-induced CNV model of neovascular AMD.


Choroid/immunology , Choroidal Neovascularization/immunology , Dendritic Cells/immunology , Membrane Proteins/immunology , fms-Like Tyrosine Kinase 3/immunology , Animals , Choroid/blood supply , Choroidal Neovascularization/etiology , Choroidal Neovascularization/genetics , Female , Flow Cytometry/methods , Iris/blood supply , Iris/immunology , Lasers/adverse effects , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Retina/immunology , Visual Acuity/immunology , Wet Macular Degeneration/immunology , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
13.
J Clin Invest ; 131(4)2021 02 15.
Article En | MEDLINE | ID: mdl-33586677

Alveolar macrophages orchestrate the response to viral infections. Age-related changes in these cells may underlie the differential severity of pneumonia in older patients. We performed an integrated analysis of single-cell RNA-Seq data that revealed homogenous age-related changes in the alveolar macrophage transcriptome in humans and mice. Using genetic lineage tracing with sequential injury, heterochronic adoptive transfer, and parabiosis, we found that the lung microenvironment drove an age-related resistance of alveolar macrophages to proliferation that persisted during influenza A viral infection. Ligand-receptor pair analysis localized these changes to the extracellular matrix, where hyaluronan was increased in aged animals and altered the proliferative response of bone marrow-derived macrophages to granulocyte macrophage colony-stimulating factor (GM-CSF). Our findings suggest that strategies targeting the aging lung microenvironment will be necessary to restore alveolar macrophage function in aging.


Aging/immunology , Cellular Microenvironment/immunology , Lung/immunology , Macrophages, Alveolar/immunology , Aging/pathology , Animals , Humans , Lung/pathology , Macrophages, Alveolar/pathology , Mice , Mice, Transgenic , RNA-Seq
14.
PLoS One ; 16(1): e0244743, 2021.
Article En | MEDLINE | ID: mdl-33411796

BACKGROUND & AIMS: Limited understanding of the role for specific macrophage subsets in the pathogenesis of cholestatic liver injury is a barrier to advancing medical therapy. Macrophages have previously been implicated in both the mal-adaptive and protective responses in obstructive cholestasis. Recently two macrophage subsets were identified in non-diseased human liver; however, no studies to date fully define the heterogeneous macrophage subsets during the pathogenesis of cholestasis. Here, we aim to further characterize the transcriptional profile of macrophages in pediatric cholestatic liver disease. METHODS: We isolated live hepatic immune cells from patients with biliary atresia (BA), Alagille syndrome (ALGS), and non-cholestatic pediatric liver by fluorescence activated cell sorting. Through single-cell RNA sequencing analysis and immunofluorescence, we characterized cholestatic macrophages. We next compared the transcriptional profile of pediatric cholestatic and non-cholestatic macrophage populations to previously published data on normal adult hepatic macrophages. RESULTS: We identified 3 distinct macrophage populations across cholestatic liver samples and annotated them as lipid-associated macrophages, monocyte-like macrophages, and adaptive macrophages based on their transcriptional profile. Immunofluorescence of liver tissue using markers for each subset confirmed their presence across BA (n = 6) and ALGS (n = 6) patients. Cholestatic macrophages demonstrated reduced expression of immune regulatory genes as compared to normal hepatic macrophages and were distinct from macrophage populations defined in either healthy adult or pediatric non-cholestatic liver. CONCLUSIONS: We are the first to perform single-cell RNA sequencing on human pediatric cholestatic liver and identified three macrophage subsets with distinct transcriptional signatures from healthy liver macrophages. Further analyses will identify similarities and differences in these macrophage sub-populations across etiologies of cholestatic liver disease. Taken together, these findings may allow for future development of targeted therapeutic strategies to reprogram macrophages to an immune regulatory phenotype and reduce cholestatic liver injury.


Biliary Atresia/metabolism , Cholestasis/metabolism , Liver/metabolism , Macrophages/metabolism , Transcriptome , Biliary Atresia/genetics , Biliary Atresia/pathology , Child , Child, Preschool , Cholestasis/genetics , Cholestasis/pathology , Female , Gene Expression Profiling , Humans , Infant , Liver/pathology , Male
15.
J Neuroinflammation ; 17(1): 341, 2020 Nov 13.
Article En | MEDLINE | ID: mdl-33187533

BACKGROUND: Neovascular age-related macular degeneration (nAMD) commonly causes vision loss from aberrant angiogenesis, termed choroidal neovascularization (CNV). Macrophages are heterogeneous cells that are necessary for experimental CNV, present in human CNV samples, and can display diverse functions, which are dependent upon both their origin and tissue microenvironment. Despite these associations, choroidal macrophage heterogeneity remains unexplored. METHODS: We performed multi-parameter flow cytometry on wildtype (WT) and Ccr2-/- mice after laser injury to identify macrophage subtypes, and determine which subsets originate from classical monocytes. To fate map tissue resident macrophages at steady state and after laser injury, we used the Cx3cr1CreER/+ ; Rosa26zsGFP/+ mouse model. We reanalyzed previously published single-cell RNA-seq of human choroid samples from healthy and nAMD patients to investigate human macrophage heterogeneity, disease association, and function. RESULTS: We identified 4 macrophage subsets in mice: microglia, MHCII+CD11c-, MHCII+CD11c+, and MHCII-. Microglia are tissue resident macrophages at steady state and unaffected by laser injury. At steady state, MHCII- macrophages are long lived, tissue resident macrophages, while MHCII+CD11c- and MHCII+CD11c+ macrophages are partially replenished from blood monocytes. After laser injury, MHCII+CD11c- macrophages are entirely derived from classical monocytes, MHCII- macrophages originate from classical monocytes (90%) and an expansion of tissue resident macrophages (10%), and MHCII+CD11c+ macrophages are derived from classical monocytes (70%), non-classical monocytes (10%), and an expansion of tissue resident macrophages (20%). Single-cell RNA-seq analysis of human choroid found 5 macrophage subsets: two MHCII+CD11C- and three MHCII+CD11C+ populations. One MHCII+CD11C+ subset was 78% derived from a patient with nAMD. Differential expression analysis identified up-regulation of pro-angiogenic gene expression in one MHCII+CD11C- and two MHCII+CD11C+ subsets, including the disease-associated cluster. The upregulated MHCII+CD11C- pro-angiogenic genes were unique compared to the increased MHCII+CD11C+ angiogenesis genes. CONCLUSIONS: Macrophage origin impacts heterogeneity at steady state and after laser injury in mice. Both mice and human patients demonstrate similar macrophage subtypes. Two discrete pro-angiogenic macrophage populations exist in the human choroid. Targeting specific, pro-angiogenic macrophage subsets is a potential novel therapeutic for nAMD.


Choroidal Neovascularization/genetics , Choroidal Neovascularization/metabolism , Genetic Heterogeneity , Macrophages/metabolism , Animals , Choroidal Neovascularization/pathology , Female , Laser Therapy/adverse effects , Macrophages/pathology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
16.
Sci Adv ; 6(33): eabb7238, 2020 08.
Article En | MEDLINE | ID: mdl-32851183

Cigarette smoking, the leading cause of chronic obstructive pulmonary disease (COPD), has been implicated as a risk factor for severe disease in patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we show that mice with lung epithelial cell-specific loss of function of Miz1, which we identified as a negative regulator of nuclear factor κB (NF-κB) signaling, spontaneously develop progressive age-related changes resembling COPD. Furthermore, loss of Miz1 up-regulates the expression of Ace2, the receptor for SARS-CoV-2. Concomitant partial loss of NF-κB/RelA prevented the development of COPD-like phenotype in Miz1-deficient mice. Miz1 protein levels are reduced in the lungs from patients with COPD, and in the lungs of mice exposed to chronic cigarette smoke. Our data suggest that Miz1 down-regulation-induced sustained activation of NF-κB-dependent inflammation in the lung epithelium is sufficient to induce progressive lung and airway destruction that recapitulates features of COPD, with implications for COVID-19.


Epithelial Cells/metabolism , Kruppel-Like Transcription Factors/metabolism , Lung/metabolism , Peptidyl-Dipeptidase A/metabolism , Phenotype , Protein Inhibitors of Activated STAT/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Ubiquitin-Protein Ligases/genetics , Up-Regulation/genetics , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Gene Knockout Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Pandemics , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Protein Inhibitors of Activated STAT/metabolism , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , SARS-CoV-2 , Signal Transduction/genetics , Smoking/adverse effects , Transcription Factor RelA/metabolism , Ubiquitin-Protein Ligases/metabolism
17.
Eur Respir J ; 55(1)2020 01.
Article En | MEDLINE | ID: mdl-31601718

Ontologically distinct populations of macrophages differentially contribute to organ fibrosis through unknown mechanisms.We applied lineage tracing, single-cell RNA sequencing and single-molecule fluorescence in situ hybridisation to a spatially restricted model of asbestos-induced pulmonary fibrosis.We demonstrate that tissue-resident alveolar macrophages, tissue-resident peribronchial and perivascular interstitial macrophages, and monocyte-derived alveolar macrophages are present in the fibrotic niche. Deletion of monocyte-derived alveolar macrophages but not tissue-resident alveolar macrophages ameliorated asbestos-induced lung fibrosis. Monocyte-derived alveolar macrophages were specifically localised to fibrotic regions in the proximity of fibroblasts where they expressed molecules known to drive fibroblast proliferation, including platelet-derived growth factor subunit A. Using single-cell RNA sequencing and spatial transcriptomics in both humans and mice, we identified macrophage colony-stimulating factor receptor (M-CSFR) signalling as one of the novel druggable targets controlling self-maintenance and persistence of these pathogenic monocyte-derived alveolar macrophages. Pharmacological blockade of M-CSFR signalling led to the disappearance of monocyte-derived alveolar macrophages and ameliorated fibrosis.Our findings suggest that inhibition of M-CSFR signalling during fibrosis disrupts an essential fibrotic niche that includes monocyte-derived alveolar macrophages and fibroblasts during asbestos-induced fibrosis.


Macrophage Colony-Stimulating Factor , Pulmonary Fibrosis , Animals , Fibrosis , Humans , Macrophages/pathology , Macrophages, Alveolar , Mice , Monocytes , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Receptor, Macrophage Colony-Stimulating Factor
18.
Invest Ophthalmol Vis Sci ; 60(15): 5059-5069, 2019 12 02.
Article En | MEDLINE | ID: mdl-31800964

Purpose: Beta-adrenergic receptor (AR) antagonists, like propranolol, inhibit angiogenesis in multiple ocular conditions through an unknown mechanism. We previously showed that propranolol reduces choroidal neovascularization (CNV) by decreasing interleukin-6 levels. Since macrophages are one of the central producers of interleukin-6, we examined whether macrophages are required for propranolol-driven inhibition of choroidal angiogenesis. Methods: We tested the anti-angiogenic properties of propranolol in the choroidal sprouting assay and the laser-induced CNV model. Bone marrow-derived monocytes (BMDMs) were added to the choroidal sprouting assay and Ccr2-/- mice were subjected to laser-induced CNV. Multi-parameter flow cytometry was performed to characterize the ocular mononuclear phagocyte populations after laser injury and during propranolol treatment. Results: Propranolol reduced choroidal angiogenesis by 41% (P < 0.001) in the choroidal sprouting assay. Similarly, propranolol decreased laser-induced CNV by 50% (P < 0.05) in female mice, with no change in males. BMDMs increased choroidal sprouting by 146% (P < 0.0001), and this effect was ablated by propranolol. Beta-AR inhibition had no effect upon laser-induced CNV area in female Ccr2-/- mice. MHCII+ and MHCII- macrophages increased 20-fold following laser treatment in wildtype mice as compared to untreated mice, and this effect was completely attenuated in lasered Ccr2-/- mice. Moreover, propranolol increased the numbers of MHCII+ and MHCII- macrophages by 1.9 (P = 0.07) and 3.1 (P < 0.05) fold in lasered female mice with no change in macrophage numbers in males. Conclusions: Our data suggest that propranolol inhibits angiogenesis through recruitment of monocyte-derived macrophages in female mice only. These data show the anti-angiogenic nature of beta-AR blocker-recruited monocyte-derived macrophages in CNV.


Choroidal Neovascularization/drug therapy , Fluorescein Angiography/methods , Macrophages/pathology , Monocytes/pathology , Propranolol/pharmacology , Receptors, Adrenergic, beta/metabolism , Adrenergic beta-Antagonists/pharmacology , Animals , Choroid/metabolism , Choroid/pathology , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Disease Models, Animal , Female , Flow Cytometry , Fundus Oculi , Imaging, Three-Dimensional , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/drug effects , Monocytes/metabolism , Receptors, Adrenergic, beta/drug effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology
20.
Nat Immunol ; 20(7): 928-942, 2019 07.
Article En | MEDLINE | ID: mdl-31061532

To define the cell populations that drive joint inflammation in rheumatoid arthritis (RA), we applied single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq) and flow cytometry to T cells, B cells, monocytes, and fibroblasts from 51 samples of synovial tissue from patients with RA or osteoarthritis (OA). Utilizing an integrated strategy based on canonical correlation analysis of 5,265 scRNA-seq profiles, we identified 18 unique cell populations. Combining mass cytometry and transcriptomics revealed cell states expanded in RA synovia: THY1(CD90)+HLA-DRAhi sublining fibroblasts, IL1B+ pro-inflammatory monocytes, ITGAX+TBX21+ autoimmune-associated B cells and PDCD1+ peripheral helper T (TPH) cells and follicular helper T (TFH) cells. We defined distinct subsets of CD8+ T cells characterized by GZMK+, GZMB+, and GNLY+ phenotypes. We mapped inflammatory mediators to their source cell populations; for example, we attributed IL6 expression to THY1+HLA-DRAhi fibroblasts and IL1B production to pro-inflammatory monocytes. These populations are potentially key mediators of RA pathogenesis.


Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Gene Expression Profiling , Synovial Membrane/metabolism , Transcriptome , Arthritis, Rheumatoid/pathology , Autoimmunity/genetics , Biomarkers , Computational Biology/methods , Cross-Sectional Studies , Cytokines/metabolism , Fibroblasts/metabolism , Flow Cytometry , Gene Expression , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , Leukocytes/immunology , Leukocytes/metabolism , Monocytes/immunology , Monocytes/metabolism , Signal Transduction , Single-Cell Analysis/methods , Synovial Membrane/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Workflow
...