Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163282

RESUMEN

The relevance of vasopressin (AVP) of magnocellular origin to the regulation of the endocrine stress axis and related behaviour is still under discussion. We aimed to obtain deeper insight into this process. To rescue magnocellular AVP synthesis, a vasopressin-containing adeno-associated virus vector (AVP-AAV) was injected into the supraoptic nucleus (SON) of AVP-deficient Brattleboro rats (di/di). We compared +/+, di/di, and AVP-AAV treated di/di male rats. The AVP-AAV treatment rescued the AVP synthesis in the SON both morphologically and functionally. It also rescued the peak of adrenocorticotropin release triggered by immune and metabolic challenges without affecting corticosterone levels. The elevated corticotropin-releasing hormone receptor 1 mRNA levels in the anterior pituitary of di/di-rats were diminished by the AVP-AAV-treatment. The altered c-Fos synthesis in di/di-rats in response to a metabolic stressor was normalised by AVP-AAV in both the SON and medial amygdala (MeA), but not in the central and basolateral amygdala or lateral hypothalamus. In vitro electrophysiological recordings showed an AVP-induced inhibition of MeA neurons that was prevented by picrotoxin administration, supporting the possible regulatory role of AVP originating in the SON. A memory deficit in the novel object recognition test seen in di/di animals remained unaffected by AVP-AAV treatment. Interestingly, although di/di rats show intact social investigation and aggression, the SON AVP-AAV treatment resulted in an alteration of these social behaviours. AVP released from the magnocellular SON neurons may stimulate adrenocorticotropin secretion in response to defined stressors and might participate in the fine-tuning of social behaviour with a possible contribution from the MeA.


Asunto(s)
Hormona Adrenocorticotrópica/metabolismo , Núcleo Supraóptico/metabolismo , Vasopresinas/metabolismo , Hormona Adrenocorticotrópica/genética , Animales , Núcleo Basal de Meynert/metabolismo , Encéfalo/metabolismo , Corticosterona/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Brattleboro , Conducta Social , Vasopresinas/fisiología
2.
Biol Psychiatry ; 81(2): 111-123, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27587263

RESUMEN

BACKGROUND: Associative memory impairment is an early clinical feature of dementia patients, but the molecular and cellular mechanisms underlying these deficits are largely unknown. In this study, we investigated the functional regulation of the cyclic adenosine monophosphate response element binding protein (CREB)-regulated transcription coactivator 1 (CRTC1) by associative learning in physiological and neurodegenerative conditions. METHODS: We evaluated the activation of CRTC1 in the hippocampus of control mice and mice lacking the Alzheimer's disease-linked presenilin genes (presenilin conditional double knockout [PS cDKO]) after one-trial contextual fear conditioning by using biochemical, immunohistochemical, and gene expression analyses. PS cDKO mice display classical features of neurodegeneration occurring in Alzheimer's disease including age-dependent cortical atrophy, neuron loss, dendritic degeneration, and memory deficits. RESULTS: Context-associative learning, but not single context or unconditioned stimuli, induces rapid dephosphorylation (Ser151) and translocation of CRTC1 from the cytosol/dendrites to the nucleus of hippocampal neurons in the mouse brain. Accordingly, context-associative learning induces differential CRTC1-dependent transcription of c-fos and the nuclear receptor subfamily 4 (Nr4a) genes Nr4a1-3 in the hippocampus through a mechanism that involves CRTC1 recruitment to CRE promoters. Deregulation of CRTC1 dephosphorylation, nuclear translocation, and transcriptional function are associated with long-term contextual memory deficits in PS cDKO mice. Importantly, CRTC1 gene therapy in the hippocampus ameliorates context memory and transcriptional deficits and dendritic degeneration despite ongoing cortical degeneration in this neurodegeneration mouse model. CONCLUSIONS: These findings reveal a critical role of CRTC1 in the hippocampus during associative memory, and provide evidence that CRTC1 deregulation underlies memory deficits during neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Hipocampo/metabolismo , Memoria/fisiología , Factores de Transcripción/metabolismo , Animales , Aprendizaje por Asociación/fisiología , Condicionamiento Clásico/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dendritas/patología , Miedo/fisiología , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Presenilina-1/genética , Presenilina-2/genética
3.
Physiol Behav ; 143: 10-4, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25703187

RESUMEN

The present study was designed to further investigate the nature of stimuli and the timing of their presentation, which can induce retroactive interference with social recognition memory in mice. In accordance with our previous observations, confrontation with an unfamiliar conspecific juvenile 3h and 6h, but not 22 h, after the initial learning session resulted in retroactive interference. The same effect was observed with the exposure to both enantiomers of the monomolecular odour carvone, and with a novel object. Exposure to a loud tone (12 KHz, 90 dB) caused retroactive interference at 6h, but not 3h and 22 h, after sampling. Our data show that retroactive interference of social recognition memory can be induced by exposing the experimental subjects to the defined stimuli presented <22 h after learning in their home cage. The distinct interference triggered by the tone presentation at 6h after sampling may be linked to the intrinsic aversiveness of the loud tone and suggests that at this time point memory consolidation is particularly sensitive to stress.


Asunto(s)
Recuerdo Mental/fisiología , Estimulación Física , Reconocimiento en Psicología/fisiología , Conducta Social , Animales , Aprendizaje/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...