Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Environ Entomol ; 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38850569

The effect of the 20th-century functional extinction of the American Chestnut (Fagaceae: Castanea dentata (Marshall) Borkh) on associated herbivorous insects is unknown. These insects include leafminers that spend at least part of their larval phase feeding between the epidermises of leaves. We surveyed leafminers on C. dentata, nonnative Castanea spp., and hybrids on Long Island, NY. We found 10 leafminer species feeding on Castanea spp. A first New York State record was documented for Stigmella castaneaefoliella (Chambers) (Lepidoptera: Nepticulidae). New host records are established for 6 lepidopterans, including a new host genus for Phyllonorycter basistrigella (Clemens) (Lepidoptera: Gracillariidae). We found no significant differences in the mean intensity of S. castaneaefoliella leaf mines on native and nonnative Castanea spp.; however, our sample size was small. Thus, we guardedly conclude that nonnative Castanea spp. can serve as refugia for C. dentata leafminers native to North America while acknowledging that the extent to which nonnative species are utilized requires further investigation.

3.
Acc Chem Res ; 55(18): 2581-2593, 2022 09 20.
Article En | MEDLINE | ID: mdl-36069734

Atropisomerism is a type of axial chirality resulting from hindered rotation about a σ bond that gives rise to nonsuperimposable stereoisomers (termed "atropisomers"). The inversion of chirality of an atropisomeric axis is a time- and temperature-dependent dynamic process occurring by simple bond rotation. For this reason, the rotational energy barrier (ΔErot) and the interconversion rate between an atropisomeric pair of biologically active molecules are important parameters to consider in drug discovery.Many compounds with atropisomeric axes advance into development every year. The vast majority of them have low rotational energy barriers (ΔErot lower than 20 kcal/mol), meaning they are rapidly equilibrating conformers and considered achiral (class 1 atropisomers). Compounds in class 2 (ΔErot = 20 to 30 kcal/mol) can be challenging to develop given that the stereochemical integrity of the atropisomeric axes can be compromised over time. It has been recommended that small molecule drug candidates containing one or more atropisomeric axes with rotational energy barriers greater than 30 kcal/mol (class 3 atropisomers) should be developed as single atropisomers.In medicinal chemistry, a σ bond with restricted rotation is engineered into a bioactive molecule primarily to limit its number of accessible conformations, thereby minimizing entropic and/or enthalpic energy penalties associated with biological target binding. In addition to enhanced pharmacology, potential positive outcomes of introducing atropisomerism include improved physicochemical properties and superior pharmacokinetics/ADME profiles. The application of atropisomerism in medicinal chemistry has become increasingly enabled due to recent advances in synthesis, purification, and analysis, as described in this special issue and recent review articles.Herein, we discuss two case studies from our own work in which restricting rotation about axes of atropisomerism led to significant improvements in pharmacological, physicochemical, and ADME properties for different series of PI3K inhibitors. In the first instance, a restricted axis of rotation was designed to mitigate an acid-mediated hydrolytic degradation pathway observed in a series of PI3Kδ inhibitors. The conformational constraint disrupts conjugation between a quinazolinone and a pyridine, leading to improved chemical stability under acidic conditions. In the second case study, introduction of a restricted axis of rotation between two heteroaromatic systems in a series of PI3Kß inhibitors generated pairs of atropisomeric compounds with significantly different biological activities. Advanced profiling also demonstrated clear substrate stereospecificity in regard to metabolism by aldehyde oxidase. Gratifyingly, the eutomer (more active atropisomer) shows significantly less susceptibility for oxidative metabolism relative to the distomer (less active atropisomer). The improvements in potency, selectivity, chemical stability, and metabolic stability discussed in this manuscript are all directly related to the concept of atropisomerism.


Chemistry, Pharmaceutical , Phosphatidylinositol 3-Kinases , Aldehyde Oxidase , Drug Discovery , Pyridines , Quinazolinones
4.
ACS Med Chem Lett ; 11(6): 1236-1243, 2020 Jun 11.
Article En | MEDLINE | ID: mdl-32551006

A series of PI3Kß selective inhibitors derived from a novel 4-(1H-benzo[d]imidazol-1-yl)quinoline chemotype has been rationally designed. Crucial to achieving the desired selectivity over the other class I PI3K isoforms, including the challenging δ-isoform, was the identification of a subset of substituted pyridine hinge binders. This work led to the discovery of (P)-14, a highly selective and orally bioavailable PI3Kß inhibitor displaying an excellent pharmacokinetic profile in addition to great cellular potency in various PTEN-deficient tumor cell lines. Results from a dog toxicology study revealing structure-related, off-target ocular toxicity are also briefly discussed.

5.
J Med Chem ; 61(15): 6858-6868, 2018 Aug 09.
Article En | MEDLINE | ID: mdl-30015489

Atropisomerism is a type of axial chirality in which enantiomers or diastereoisomers arise due to hindered rotation around a bond axis. In this manuscript, we report a case in which torsional scan studies guided the thoughtful creation of a restricted axis of rotation between two heteroaromatic systems of a phosphoinositide 3-kinase (PI3K) ß inhibitor, generating a pair of atropisomeric compounds with significantly different pharmacological and pharmacokinetic profiles. Emblematic of these differences, the metabolism of inactive ( M)-28 is primarily due to the cytosolic enzyme aldehyde oxidase, while active ( P)-28 has lower affinity for aldehyde oxidase, resulting in substantially better metabolic stability. Additionally, we report torsional scan and experimental studies used to determine the barriers of rotation of this novel PI3Kß inhibitor.


Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Adenosine Triphosphate/metabolism , Animals , Enzyme Inhibitors/metabolism , Inhibitory Concentration 50 , Mice , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Protein Conformation , Quinazolines/chemistry , Quinazolines/metabolism , Quinazolines/pharmacology , Stereoisomerism , Substrate Specificity
6.
J Med Chem ; 60(4): 1555-1567, 2017 02 23.
Article En | MEDLINE | ID: mdl-28106991

Phosphoinositide 3-kinase (PI3K) ß signaling is required to sustain cancer cell growth in which the tumor suppressor phosphatase and tensin homolog (PTEN) has been deactivated. This manuscript describes the discovery, optimization, and in vivo evaluation of a novel series of PI3Kß/δ inhibitors in which PI3Kß potency was built in a PI3Kδ-selective template. This work led to the discovery of a highly selective PI3Kß/δ inhibitor displaying excellent pharmacokinetic profile and efficacy in a human PTEN-deficient LNCaP prostate carcinoma xenograft tumor model.


PTEN Phosphohydrolase/genetics , Phosphoinositide-3 Kinase Inhibitors , Prostatic Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Animals , Cell Line, Tumor , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Dogs , Haplorhini , Humans , Male , Mice , Models, Molecular , Prostate/drug effects , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley
7.
J Med Chem ; 59(19): 9228-9242, 2016 Oct 13.
Article En | MEDLINE | ID: mdl-27660855

Aberrant signaling of phosphoinositide 3-kinase δ (PI3Kδ) has been implicated in numerous pathologies including hematological malignancies and rheumatoid arthritis. Described in this manuscript are the discovery, optimization, and in vivo evaluation of a novel series of pyridine-containing PI3Kδ inhibitors. This work led to the discovery of 35, a highly selective inhibitor of PI3Kδ which displays an excellent pharmacokinetic profile and is efficacious in a rodent model of rheumatoid arthritis.

8.
J Med Chem ; 59(7): 3532-48, 2016 Apr 14.
Article En | MEDLINE | ID: mdl-26980109

Inhibition of phosphoinositide 3-kinase δ (PI3Kδ) is an appealing target for several hematological malignancies and inflammatory diseases. Herein, we describe the discovery and optimization of a series of propeller shaped PI3Kδ inhibitors comprising a novel triaminopyrimidine hinge binder. Combinations of electronic and structural strategies were employed to mitigate aldehyde oxidase mediated metabolism. This medicinal chemistry effort culminated in the identification of 52, a potent and highly selective inhibitor of PI3Kδ that demonstrates efficacy in a rat model of arthritis.


Arthritis, Experimental/drug therapy , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Quinazolinones/pharmacology , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/enzymology , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/enzymology , Cells, Cultured , Collagen/toxicity , Crystallography, X-Ray , Disease Models, Animal , Female , Hepatocytes/drug effects , Hepatocytes/enzymology , Humans , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Pyrimidines/pharmacokinetics , Quinazolinones/chemistry , Quinazolinones/pharmacokinetics , Rats , Rats, Inbred Lew , Tissue Distribution
9.
Synthesis (Stuttg) ; 45(6): 719-728, 2013.
Article En | MEDLINE | ID: mdl-25506094

An efficient approach to the tricyclic framework of FR901483 is described. The sequence features a [3, 3]-sigmatropic rearrangement of a cyanate into an isocyanate, followed by its subsequent asymmetric rhodium-catalyzed [2+2+2] cycloaddition with a terminal alkyne for the synthesis of the indolizidine core. The aza-tricyclic core is completed using an intramolecular benzoin reaction to close the last ring of the natural product. Through a model study of the key cycloaddition, we evaluated the impact of different substituents on the tether of the alkenyl isocyanate.

10.
J Am Chem Soc ; 131(43): 15717-28, 2009 Nov 04.
Article En | MEDLINE | ID: mdl-19817441

This manuscript describes the development and scope of the asymmetric rhodium-catalyzed [2 + 2 + 2] cycloaddition of terminal alkynes and alkenyl isocyanates leading to the formation of indolizidine and quinolizidine scaffolds. The use of phosphoramidite ligands proved crucial for avoiding competitive terminal alkyne dimerization. Both aliphatic and aromatic terminal alkynes participate well, with product selectivity a function of both the steric and electronic character of the alkyne. Manipulation of the phosphoramidite ligand leads to tuning of enantio- and product selectivity, with a complete turnover in product selectivity seen with aliphatic alkynes when moving from Taddol-based to biphenol-based phosphoramidites. Terminal and 1,1-disubstituted olefins are tolerated with nearly equal efficacy. Examination of a series of competition experiments in combination with analysis of reaction outcome shed considerable light on the operative catalytic cycle. Through a detailed study of a series of X-ray structures of rhodium(cod)chloride/phosphoramidite complexes, we have formulated a mechanistic hypothesis that rationalizes the observed product selectivity.


Alkynes/chemistry , Isocyanates/chemistry , Rhodium/chemistry , Catalysis , Stereoisomerism
11.
Chem Soc Rev ; 38(11): 3149-59, 2009 Nov.
Article En | MEDLINE | ID: mdl-19847348

Cycloaddition reactions are attractive strategies for the rapid formation of molecular complexity in organic synthesis, as multiple bonds are formed in a single process. To this end, several research groups have been actively involved in the development of catalytic methods to activate readily accessible pi-components to achieve cycloadditions. However, the use of C-N pi-components for the formation of heterocycles by these processes is less well developed. It has been previously demonstrated that the combination of different isocyanates with two alkynes yields pyridones of several types by metal-catalyzed [2 + 2 + 2] cycloadditions. The potential of this chemistry has been extended to alkenes as C-C pi-components, allowing the formation of sp(3)-stereocenters. In this tutorial review directed towards [n + 2 + 2] cycloadditions of heterocumulenes, alkynes and alkenes, the recent advances in the catalytic asymmetric synthesis of indolizidine, quinolizidine and azocine skeletons are discussed.

12.
J Am Chem Soc ; 130(43): 14066-7, 2008 Oct 29.
Article En | MEDLINE | ID: mdl-18834123

An asymmetric intermolecular Stetter reaction of glyoxamide and alkylidenemalonates has been developed. Catalyzed by a novel N-heterocyclic carbene, the Stetter adducts are formed in good yield and excellent enantioselectivity. The presence of a sensitive epimerizable stereocenter is tolerated under these mildly basic reaction conditions if a bulky amine base is used. The products may be further elaborated to provide synthetically useful intermediates.


Alkadienes/chemistry , Amides/chemical synthesis , Malonates/chemistry , Sulfonylurea Compounds/chemistry , Amides/chemistry , Catalysis , Methane/analogs & derivatives , Methane/chemistry , Molecular Structure , Phenylalanine/chemistry , Stereoisomerism
13.
J Org Chem ; 73(19): 7457-66, 2008 Oct 03.
Article En | MEDLINE | ID: mdl-18771325

Several alpha,alpha-dioxothiones were generated in situ and reacted with 1,3-dienes of varying electronic and steric properties. It was found that thiones 10a and 11a reacted well with electron-rich or electron-poor dienes and are complementary in their regioselectivities when steric effects are at play. The calculated preferred mechanistic pathway implies a thiiranium zwitterion intermediate.

14.
J Org Chem ; 73(16): 6239-50, 2008 Aug 15.
Article En | MEDLINE | ID: mdl-18642871

We describe a tandem Mitsunobu/3,3-sigmatropic rearrangement of allylic azides on a chiral auxiliary system that favors one regioisomer thanks to its exceptional steric bias. The sequence may be completed by the oxidative cleavage of the auxiliary or by a ring-closing metathesis reaction that produces a carbo- or heterocycle directly and a recyclable form of the chiral auxiliary. Applications of the methodology to the total synthesis of (+)-coniine, (+)-lentiginosin, and (+)-pumiliotoxin C are reported.


Alkaloids/chemical synthesis , Allyl Compounds/chemistry , Azides/chemistry , Allyl Compounds/chemical synthesis , Amino Acids/chemical synthesis , Animals , Azides/chemical synthesis , Heterocyclic Compounds/chemical synthesis , Piperidines/chemical synthesis , Quinolines/chemical synthesis , Stereoisomerism
15.
Adapt Phys Activ Q ; 24(4): 305-16, 2007 Oct.
Article En | MEDLINE | ID: mdl-18042968

Guided by Self-Determination Theory (SDT), the present study examined the sport motivation and coping skills of male and female wheelchair basketball players with and without disability (N = 72). In line with SDT, results showed that intrinsic and extrinsic motivation as well as amotivation was found to be present in this sample of wheelchair basketball players. Results also demonstrated that the participants surveyed in the present study scored higher on self-determined types of motivation than non self-determined types of motivation, thus replicating past research with athletes without disability. Furthermore, wheelchair basketball players with and without disability did not differ significantly with respect to sport motivation and coping skills, suggesting that they are more alike than dissimilar. Finally, results revealed that self-determined motivation is associated with enhanced psychological functioning.


Basketball , Disabled Persons/psychology , Personal Autonomy , Wheelchairs , Adaptation, Psychological , Adult , Canada , Female , Humans , Male , Motivation , Surveys and Questionnaires
16.
Org Lett ; 8(20): 4385-8, 2006 Sep 28.
Article En | MEDLINE | ID: mdl-16986906

An advanced intermediate toward anti-cancer quassinoids has been synthesized using a quadruple diene-transmissive [4+2]-cycloaddition strategy. High convergence is achieved thanks to a regio- and stereoselective hetero-Diels-Alder reaction using a thione. The relative stereochemistry of the final Diels-Alder adduct was controlled by tethered substituents introduced via a highly syn- and gamma-selective vinylogous Mukaiyama aldol.


Dioxanes/chemistry , Quassins/chemical synthesis , Cyclization , Stereoisomerism
17.
Bioorg Med Chem Lett ; 16(19): 4987-93, 2006 Oct 01.
Article En | MEDLINE | ID: mdl-16908138

Benzimidazole-based allosteric inhibitors of the hepatitis C virus (HCV) NS5B polymerase were diversified to a variety of topologically related scaffolds. Replacement of the polar benzimidazole core by lipophilic indoles led to inhibitors with improved potency in the cell-based subgenomic HCV replicon system. Transposing the indole scaffold into a previously described series of benzimidazole-tryptophan amides generated the most potent inhibitors of HCV RNA replication in cell culture reported to date in this series (EC(50) approximately 50 nM).


Benzimidazoles/pharmacology , Hepacivirus/drug effects , Indoles/pharmacology , Replicon/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Cell Line , Humans , Inhibitory Concentration 50 , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Structure-Activity Relationship
...