Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Kidney Int ; 88(6): 1402-1410, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26352300

RESUMEN

Copy number variations associate with different developmental phenotypes and represent a major cause of congenital anomalies of the kidney and urinary tract (CAKUT). Because rare pathogenic copy number variations are often large and contain multiple genes, identification of the underlying genetic drivers has proven to be difficult. Here we studied the role of rare copy number variations in 80 patients from the KIMONO study cohort for which pathogenic mutations in three genes commonly implicated in CAKUT were excluded. In total, 13 known or novel genomic imbalances in 11 of 80 patients were absent or extremely rare in 23,362 population controls. To identify the most likely genetic drivers for the CAKUT phenotype underlying these rare copy number variations, we used a systematic in silico approach based on frequency in a large data set of controls, annotation with publicly available databases for developmental diseases, tolerance and haploinsufficiency scores, and gene expression profile in the developing kidney and urinary tract. Five novel candidate genes for CAKUT were identified that showed specific expression in the human and mouse developing urinary tract. Among these genes, DLG1 and KIF12 are likely novel susceptibility genes for CAKUT in humans. Thus, there is a significant role of genomic imbalance in the determination of kidney developmental phenotypes. Additionally, we defined a systematic strategy to identify genetic drivers underlying rare copy number variations.

2.
N Engl J Med ; 369(7): 621-9, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23862974

RESUMEN

BACKGROUND: Congenital abnormalities of the kidney and the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and the etiologic factors are poorly understood. METHODS: We performed genomewide linkage analysis and whole-exome sequencing in a family with an autosomal dominant form of congenital abnormalities of the kidney or urinary tract (seven affected family members). We also performed a sequence analysis in 311 unrelated patients, as well as histologic and functional studies. RESULTS: Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single, rare, deleterious variant within these linkage intervals, a heterozygous splice-site mutation in the dual serine-threonine and tyrosine protein kinase gene (DSTYK). This variant, which resulted in aberrant splicing of messenger RNA, was present in all affected family members. Additional, independent DSTYK mutations, including nonsense and splice-site mutations, were detected in 7 of 311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in developmental defects in multiple organs, which suggested loss of fibroblast growth factor (FGF) signaling. Consistent with this finding is the observation that DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated phosphorylation of extracellular-signal-regulated kinase (ERK), the principal signal downstream of receptor tyrosine kinases. CONCLUSIONS: We detected independent DSTYK mutations in 2.3% of patients with congenital abnormalities of the kidney or urinary tract, a finding that suggests that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling. (Funded by the National Institutes of Health and others.).


Asunto(s)
Mutación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Sistema Urinario/anomalías , Anomalías Urogenitales/genética , Adulto , Animales , Secuencia de Bases , Niño , Exoma , Femenino , Técnicas de Silenciamiento del Gen , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Heterocigoto , Humanos , Lactante , Riñón/anomalías , Masculino , Ratones , Datos de Secuencia Molecular , Linaje , ARN Interferente Pequeño , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Sistema Urinario/crecimiento & desarrollo , Sistema Urinario/metabolismo , Adulto Joven
3.
Am J Hum Genet ; 91(6): 987-97, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23159250

RESUMEN

We examined the burden of large, rare, copy-number variants (CNVs) in 192 individuals with renal hypodysplasia (RHD) and replicated findings in 330 RHD cases from two independent cohorts. CNV distribution was significantly skewed toward larger gene-disrupting events in RHD cases compared to 4,733 ethnicity-matched controls (p = 4.8 × 10(-11)). This excess was attributable to known and novel (i.e., not present in any database or in the literature) genomic disorders. All together, 55/522 (10.5%) RHD cases harbored 34 distinct known genomic disorders, which were detected in only 0.2% of 13,839 population controls (p = 1.2 × 10(-58)). Another 32 (6.1%) RHD cases harbored large gene-disrupting CNVs that were absent from or extremely rare in the 13,839 population controls, identifying 38 potential novel or rare genomic disorders for this trait. Deletions at the HNF1B locus and the DiGeorge/velocardiofacial locus were most frequent. However, the majority of disorders were detected in a single individual. Genomic disorders were detected in 22.5% of individuals with multiple malformations and 14.5% of individuals with isolated urinary-tract defects; 14 individuals harbored two or more diagnostic or rare CNVs. Strikingly, the majority of the known CNV disorders detected in the RHD cohort have previous associations with developmental delay or neuropsychiatric diseases. Up to 16.6% of individuals with kidney malformations had a molecular diagnosis attributable to a copy-number disorder, suggesting kidney malformations as a sentinel manifestation of pathogenic genomic imbalances. A search for pathogenic CNVs should be considered in this population for the diagnosis of their specific genomic disorders and for the evaluation of the potential for developmental delay.


Asunto(s)
Variaciones en el Número de Copia de ADN , Enfermedades Renales/congénito , Enfermedades Renales/genética , Estudios de Casos y Controles , Aberraciones Cromosómicas , Estudios de Asociación Genética , Genotipo , Humanos , Anotación de Secuencia Molecular
4.
Kidney Int ; 80(4): 389-96, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21697813

RESUMEN

To identify gene loci associated with steroid-resistant nephrotic syndrome (SRNS), we utilized homozygosity mapping and exome sequencing in a consanguineous pedigree with three affected siblings. High-density genotyping identified three segments of homozygosity spanning 33.6 Mb on chromosomes 5, 10, and 15 containing 296 candidate genes. Exome sequencing identified two homozygous missense variants within the chromosome 15 segment; an A159P substitution in myosin 1E (MYO1E), encoding a podocyte cytoskeletal protein; and an E181K substitution in nei endonuclease VIII-like 1 (NEIL1), encoding a base-excision DNA repair enzyme. Both variants disrupt highly conserved protein sequences and were absent in public databases, 247 healthy controls, and 286 patients with nephrotic syndrome. The MYO1E A159P variant is noteworthy, as it is expected to impair ligand binding and actin interaction in the MYO1E motor domain. The predicted loss of function is consistent with the previous demonstration that Myo1e inactivation produces nephrotic syndrome in mice. Screening 71 additional patients with SRNS, however, did not identify independent NEIL1 or MYO1E mutations, suggesting larger sequencing efforts are needed to uncover which mutation is responsible for the phenotype. Our findings demonstrate the utility of exome sequencing for rapidly identifying candidate genes for human SRNS.


Asunto(s)
ADN Glicosilasas/genética , Análisis Mutacional de ADN , Exoma , Miosina Tipo I/genética , Síndrome Nefrótico/congénito , Estudios de Casos y Controles , Cromosomas Humanos Par 15 , ADN Glicosilasas/química , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Italia , Modelos Moleculares , Mutación Missense , Miosina Tipo I/química , Síndrome Nefrótico/genética , Ciudad de Nueva York , Linaje , Fenotipo , Conformación Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...