Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Alcohol Clin Exp Res ; 40(5): 945-54, 2016 05.
Article En | MEDLINE | ID: mdl-27084498

BACKGROUND: The nociceptin/orphanin-FQ (or opioid receptor-like [ORL1]) receptor (NOP) is localized in the mesolimbic reward pathway and has been suggested to play a role in feeding, mood, stress, and addiction. Since its deorphanization in 1995, there has been a clear dichotomy in the literature regarding whether an agonist or antagonist would provide therapeutic benefit. Specifically, the literature reports indicate that NOP receptor antagonists produce efficacy in animal models of hyperphagia and antidepressant-like activity, whereas NOP agonists produce anxiolytic-like effects and dampen reward/addiction behaviors including ethanol consumption. METHODS: We characterize here the potent, orally bioavailable NOP antagonist, LY2940094, in rodent models of ethanol consumption, including ethanol self-administration, progressive ratio operant self-administration, stress-induced reinstatement of ethanol seeking, and in vivo microdialysis in the nucleus accumbens. RESULTS: LY2940094 dose dependently reduced homecage ethanol self-administration in Indiana alcohol-preferring (P) and Marchigian Sardinian alcohol-preferring (msP) rats, without affecting food/water intake or locomotor activity. Reduced ethanol intake in P rats did not show significant tolerance over 4 days of subchronic dosing. LY2940094 attenuated progressive ratio operant responding and break points for ethanol in P rats. Moreover, stress-induced reinstatement of ethanol seeking in msP rats was completely blocked by LY2940094. Furthermore, LY2940094 blocked ethanol-stimulated dopamine release in response to ethanol challenge (1.1 g/kg, intraperitoneally). CONCLUSIONS: Our findings demonstrate for the first time that blockade of NOP receptors attenuates ethanol self-administration and ethanol-motivated behaviors, stress-induced ethanol seeking, and ethanol-induced stimulation of brain reward pathways in lines of rats that exhibit excessive ethanol consumption. Results suggest that LY2940094 may have potential therapeutic utility in treating alcohol addiction.


Drug-Seeking Behavior/drug effects , Ethanol/antagonists & inhibitors , Pyrans/pharmacology , Receptors, Opioid/drug effects , Spiro Compounds/pharmacology , Administration, Oral , Animals , Conditioning, Operant/drug effects , Dopamine/metabolism , Dose-Response Relationship, Drug , Ethanol/administration & dosage , Female , Male , Microdialysis , Narcotic Antagonists/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Pyrans/administration & dosage , Rats , Rats, Inbred Strains , Self Administration , Spiro Compounds/administration & dosage , Nociceptin Receptor
2.
Neuropharmacology ; 99: 1-8, 2015 Dec.
Article En | MEDLINE | ID: mdl-26100446

The interactions between the glutamatergic and the histaminergic systems in the brain are not fully understood. Here we studied histamine release in the medial prefrontal cortex and the posterior hypothalamus-tuberomamillary nucleus (PH-TMN) using in vivo microdialysis and electrophysiological recordings of histaminergc neurons in the PH-TMN in vivo to further address the mechanistic details of these interactions. We demonstrated that histaminergic activity was regulated by group II metabotropic glutamate receptors (mGluR 2 and 3) using systemic dosing with mGluR 2/3 agonist and antagonists and an mGluR 2 positive allosteric modulator. These interactions likely occur via direct modulation of glutamate release in the PH-TMN. The importance of circadian rhythm for histamine release was also shown using microdialysis studies with mGluR 2/3 compounds under light and dark conditions. Based on histamine release studies with NMDA and ketamine, we propose the existence of two sub-populations of NMDA receptors where one subtype is located on histaminergic cell bodies in the PH-TMN and the second on GABA-ergic neurons projecting to the PH-TMN. These subpopulations could be distinguished based on function, notably opposing actions were seen on histamine release in the medial prefrontal cortex of the rat. In summary, this paper provides evidence that the histaminergic system is closely regulated by glutamate neurons in multiple ways. In addition, this interaction depends to a great extent on the activity state of the subject.


Brain/physiology , Glutamic Acid/metabolism , Histamine/metabolism , Neurons/physiology , Receptors, Metabotropic Glutamate/metabolism , Animals , Brain/drug effects , Circadian Rhythm/physiology , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Male , Microdialysis , Microelectrodes , Neurons/drug effects , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , gamma-Aminobutyric Acid/metabolism
3.
Front Psychiatry ; 3: 49, 2012.
Article En | MEDLINE | ID: mdl-22629251

Atypical antipsychotics such as clozapine and olanzapine have been shown to enhance histamine turnover and this effect has been hypothesized to contribute to their improved therapeutic profile compared to typical antipsychotics. In the present study, we examined the effects of antipsychotic drugs on histamine (HA) efflux in the mPFC of the rat by means of in vivo microdialysis and sought to differentiate the receptor mechanisms which underlie such effects. Olanzapine and clozapine increased mPFC HA efflux in a dose related manner. Increased HA efflux was also observed after quetiapine, chlorpromazine, and perphenazine treatment. We found no effect of the selective 5-HT(2A) antagonist MDL100907, 5-HT(2c) antagonist SB242084, or the 5-HT(6) antagonist Ro 04-6790 on mPFC HA efflux. HA efflux was increased following treatment with selective H(1) receptor antagonists pyrilamine, diphenhydramine, and triprolidine, the H(3) receptor antagonist ciproxifan and the mixed 5-HT(2A)/H(1) receptor antagonist ketanserin. The potential novel antipsychotic drug FMPD, which has a lower affinity at H(1) receptors than olanzapine, did not affect HA efflux. Similarly, other antipsychotics with lower H(1) receptor affinity (risperidone, aripiprazole, and haloperidol) were also without effect on HA efflux. Finally, HA efflux after antipsychotic treatment was significantly correlated with affinity at H(1) receptors whereas nine other receptors, including 5-HT(2A), were not. These results demonstrate that both typical and atypical antipsychotics increase mPFC histamine efflux and this effect may be mediated via antagonism of histamine H(1) receptors.

4.
J Neurosci Res ; 90(3): 588-96, 2012 Mar.
Article En | MEDLINE | ID: mdl-22038504

Orexinergic neurons are discretely localized within the lateral hypothalamus and have widespread projections to the whole brain. Here, the role of orexin/hypocretin-2 receptors (OX2) in modulating extracellular concentrations of neurotransmitters was evaluated in the hypothalamus and the prefrontal cortex (PFC) of OX2 knockout (KO) mice by using a microdialysis technique. In the hypothalamus, basal concentrations of norephinephrine (NE), acetylcholine (ACh), and histamine (Hist) were significantly higher in KO mice, whereas KCl perfusion (147 mM) resulted in significantly lesser increases in NE, ACh, and Hist release in KO compared with wild-type (WT) mice. No differences in basal concentrations or evoked release of serotonin (5-HT) or dopamine (DA) were found in the hypothalamus between genotypes. In the PFC, no differences in the basal concentrations of the studied neurotransmitters were found between genotypes. After KCl perfusion, significantly higher increases in NE, 5-HT, and DA release were found in KO compared with WT mice. No differences in the evoked release of ACh and Hist in the PFC were found between genotypes. The present results demonstrate that genetic deletion of OX2 receptors differentially modulates extracellular concentrations of distinct neurotransmitters in the somatodendritic region vs. a nerve terminal region of the orexinergic neurons. In the hypothalamus, an inhibitory role of the OX2 receptors in modulating basal concentrations of NE, ACh, and Hist was revealed, which probably accounts for the reduced responsiveness to KCl as well. In the PFC, the evoked release of the monoamines NE, 5-HT, and DA seems to be controlled negatively by OX2 receptors.


Hypothalamus/physiology , Prefrontal Cortex/physiology , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Synaptic Transmission/physiology , Acetylcholine/metabolism , Animals , Dopamine/metabolism , Histamine/metabolism , Mice , Mice, Knockout , Microdialysis , Norepinephrine/metabolism , Orexin Receptors , Receptors, G-Protein-Coupled/genetics , Receptors, Neuropeptide/genetics , Serotonin/metabolism , Synaptic Transmission/genetics
5.
J Pharmacol Exp Ther ; 336(1): 165-77, 2011 Jan.
Article En | MEDLINE | ID: mdl-20947638

The normalization of excessive glutamatergic neurotransmission through the activation of metabotropic glutamate 2 (mGlu2) receptors may have therapeutic potential in a variety of psychiatric disorders, including anxiety/depression and schizophrenia. Here, we characterize the pharmacological properties of N-(4-((2-(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methyl-1H-imidazole-4-carboxamide (THIIC), a structurally novel, potent, and selective allosteric potentiator of human and rat mGlu2 receptors (EC(50) = 23 and 13 nM, respectively). THIIC produced anxiolytic-like efficacy in the rat stress-induced hyperthermia assay and the mouse stress-induced elevation of cerebellar cGMP and marble-burying assays. THIIC also produced robust activity in three assays that detect antidepressant-like activity, including the mouse forced-swim test, the rat differential reinforcement of low rate 72-s assay, and the rat dominant-submissive test, with a maximal response similar to that of imipramine. Effects of THIIC in the forced-swim test and marble burying were deleted in mGlu2 receptor null mice. Analysis of sleep electroencephalogram (EEG) showed that THIIC had a sleep-promoting profile with increased non-rapid eye movement (REM) and decreased REM sleep. THIIC also decreased the dark phase increase in extracellular histamine in the medial prefrontal cortex and decreased levels of the histamine metabolite tele-methylhistamine (t-MeHA) in rat cerebrospinal fluid. Collectively, these results indicate that the novel mGlu2-positive allosteric modulator THIIC has robust activity in models used to predict anxiolytic/antidepressant efficacy, substantiating, at least with this molecule, differentiation in the biological impact of mGlu2 potentiation versus mGlu2/3 orthosteric agonism. In addition, we provide evidence that sleep EEG and CSF t-MeHA might function as viable biomarker approaches to facilitate the translational development of THIIC and other mGlu2 potentiators.


Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Benzyl Compounds/pharmacology , Central Nervous System/drug effects , Central Nervous System/metabolism , Excitatory Amino Acid Agonists/pharmacology , Imidazoles/pharmacology , Receptors, Metabotropic Glutamate/agonists , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cell Line , Central Nervous System/chemistry , Cerebellum/chemistry , Cerebellum/drug effects , Cerebellum/metabolism , Drug Synergism , Humans , Male , Mice , Mice, Knockout , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Metabotropic Glutamate/physiology
6.
Neuropharmacology ; 58(3): 632-9, 2010 Mar.
Article En | MEDLINE | ID: mdl-19951716

In the present study we demonstrated that ketamine, an NMDA antagonist and possible psychotomimetic, increases extracellular histamine (HA) in the rat brain. We then examined the ability of the group II mGlu receptor agonist LY379268 to modulate the ketamine evoked increases in HA release in three limbic brain regions. Ketamine (25 mg/kg) increased HA in the medial prefrontal cortex (mPFC), ventral hippocampus (vHipp) and the nucleus accumbens (NAc) shell. LY379268 administered alone was without effect on basal HA efflux in the mPFC or vHipp but modestly decreased HA efflux in the NAc shell. Administration of LY379268 (3 and 10 mg/kg) prior to ketamine significantly attenuated the HA response in the mPFC, vHipp and the NAc shell. The inhibitory effects of LY379268 in the mPFC were mimicked by the systemic administration of the mGlu2 receptor positive allosteric modulator CBiPES (60 mg/kg). Finally, local perfusion experiments revealed that the effects of LY379268 on ketamine evoked HA efflux appear to be mediated by mGlu2 receptors outside the PFC as the intra-mPFC perfusion of LY379268 (100 microM or 300 microM) failed to attenuate ketamine evoked increases in HA efflux. Together, these novel observations reveal an effect of ketamine on histaminergic transmission in limbic brain areas and provide further insight into the possible antipsychotic mechanism of action of mGlu2/3 receptor agonists.


Histamine/metabolism , Ketamine/pharmacology , Limbic System/drug effects , Limbic System/metabolism , Receptors, Metabotropic Glutamate/metabolism , Amino Acids/pharmacology , Analysis of Variance , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclopropanes/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Electrochemistry/methods , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Indoles/pharmacology , Limbic System/anatomy & histology , Male , Microdialysis/methods , Quinoxalines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors
7.
J Pharmacol Exp Ther ; 331(3): 1126-36, 2009 Dec.
Article En | MEDLINE | ID: mdl-19755662

Some recently published in vitro studies with two metabotropic glutamate 2/3 receptor (mGluR(2/3)) agonists [(-)-2-oxa-4-aminobicyclo[3.1.0] hexane-4,6-dicarboxylic acid (LY379268) and 1S,2S,5R,6S-2-aminobicyclo[3.1.0]hexane-2,6-bicaroxylate monohydrate (LY354740)] suggest that these compounds may also directly interact with dopamine (DA) D(2) receptors. The current in vitro and in vivo studies were undertaken to further explore this potential interaction with D(2) receptors. LY379268 and LY354740 failed to inhibit D(2) binding in both native striatal tissue homogenates and cloned receptors at concentrations up to 10 microM. LY379268 and LY354740 (up to 10 microM) also failed to stimulate [(35)S]GTPgammaS binding in D(2L)- and D(2S)-expressing clones in the presence of NaCl or N-methyl-d-glucamine. In an in vivo striatal D(2) receptor occupancy assay, LY379268 (3-30 mg/kg) or LY354740 (1-10 mg/kg) failed to displace raclopride (3 microg/kg i.v.), whereas aripiprazole (10-60 mg/kg) showed up to 90% striatal D(2) receptor occupancy. LY379268 (10 mg/kg) and raclopride (3 mg/kg) blocked d-amphetamine and phencyclidine (PCP)-induced hyperactivity in wild-type mice. However, the effects of LY379268 were lost in mGlu(2/3) receptor knockout mice. In DA D(2) receptor-deficient mice, LY379268 but not raclopride blocked both PCP and d-amphetamine-evoked hyperactivity. In the striatum and nucleus accumbens, LY379268 (3 and 10 mg/kg) was without effect on the DA synthesis rate in reserpinized rats and also failed to prevent S-(-)-3-(3-hydroxyphenyl)-N-propylpiperidine-induced reductions in DA synthesis rate. Taken together, the current data fail to show evidence of direct DA D(2) receptor interactions of LY379268 and LY354740 in vitro or in vivo. Instead, these results provide further evidence for a novel antipsychotic mechanism of action for mGluR(2/3) agonists.


Amino Acids/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds/pharmacology , Cell Membrane/drug effects , Receptors, Dopamine D2/metabolism , Receptors, Metabotropic Glutamate/agonists , Animals , Binding, Competitive , CHO Cells , Cell Membrane/metabolism , Cricetinae , Cricetulus , Domperidone/pharmacology , Dopamine/biosynthesis , Dopamine D2 Receptor Antagonists , Female , Humans , Male , Mice , Mice, Knockout , Motor Activity/drug effects , Protein Binding , Raclopride/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/agonists , Receptors, Dopamine D2/genetics , Transfection
8.
Neuropharmacology ; 55(5): 743-54, 2008 Oct.
Article En | MEDLINE | ID: mdl-18602930

Selective inhibitors of the glycine transporter 1 (GlyT1) have been implicated in central nervous system disorders related to hypoglutamatergic function such as schizophrenia. The selective GlyT1 inhibitors ALX5407 (NFPS) and LY2365109 {[2-(4-benzo[1,3]dioxol-5-yl-2-tert-butylphenoxy)ethyl]-methylamino}-acetic acid increased cerebrospinal fluid levels of glycine and potentiated NMDA-induced increases in dialysate levels of neurotransmitters in the prefrontal cortex (PFC) and the striatum. However, higher doses produced both stimulatory and inhibitory effects on motor performance and impaired respiration, suggesting significant involvement of cerebellar and brain stem areas. A dual probe microdialysis study showed that ALX5407 transiently elevated extracellular levels of glycine in the PFC with more sustained increases in the cerebellum. In support of these findings, immuno-staining with pan-GlyT1 and GlyT1a antibodies showed a higher abundance of immunoreactivity in the brain stem/cerebellum as compared to the frontal cortical/hippocampal brain areas in four different species studied, including the mouse, rat, monkey and human. In addition, the inhibitory effects of ALX5407 on cerebellar levels of cGMP in the mouse could be reversed by the glycine A receptor antagonist strychnine but not the glycine B receptor antagonist L-701324. We propose that the adverse events seen with higher doses of ALX5407 and LY2365109 are the result of high GlyT1 inhibitory activity in caudal areas of the brain with sustained elevations of extracellular glycine. High levels of glycine in these brain areas may result in activation of strychnine-sensitive glycine A receptors that are inhibitory on both motor activity and critical brain stem functions such as respiration.


Behavior, Animal/drug effects , Brain Chemistry/drug effects , Cerebral Cortex/drug effects , Corpus Striatum/drug effects , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Sarcosine/analogs & derivatives , Animals , Cell Line, Tumor , Cyclic GMP/metabolism , Dioxoles/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Glycine/metabolism , Humans , Male , Mice , Microdialysis/methods , Motor Activity/drug effects , Neuroblastoma , Neurotransmitter Agents/metabolism , Quinolones/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sarcosine/pharmacology , Time Factors
9.
Psychopharmacology (Berl) ; 193(1): 121-36, 2007 Jul.
Article En | MEDLINE | ID: mdl-17384937

RATIONALE: Data from both preclinical and clinical studies have provided proof of concept that modulation of limbic and forebrain glutamate, via mGlu2/3 receptor agonists, might provide therapeutic benefits in many psychiatric disorders including schizophrenia and anxiety. OBJECTIVE: The aim of this study was to assess the efficacy of a structurally novel, potent, selective mGlu2/3 receptor agonist with improved bioavailability (LY404039) in animal models predictive of antipsychotic and anxiolytic efficacy. MATERIALS AND METHODS: LY404039 was assessed in amphetamine- and phencyclidine-induced hyperlocomotion, conditioned avoidance responding, fear-potentiated startle, marble burying, and rotarod behavioral tests. Monoamine release and turnover were assessed using microdialysis and ex vivo tissue levels. RESULTS: LY404039 attenuated amphetamine- and phencyclidine-induced hyperlocomotion (3-30 and 10 mg/kg, respectively). LY404039 (3-10 mg/kg) inhibited conditioned avoidance responding. LY404039 also reduced fear-potentiated startle in rats (3-30 microg/kg) and marble burying in mice (3-10 mg/kg), indicating anxiolytic-like effects. Importantly, LY404039 did not produce sedative effects or motor impairment as measured by rotarod performance and lack of escape failures in the conditioned avoidance task (at doses up to 30 and 10 mg/kg, respectively). LY404039 (10 mg/kg) also increased dopamine and serotonin release/turnover in the prefrontal cortex. CONCLUSIONS: These results demonstrate the broad preclinical efficacy of LY404039 across multiple animal models of antipsychotic and anxiolytic efficacy. Additionally, this compound modulates mesocortical neurotransmission and provides a novel mechanism for the treatment of psychiatric disorders that may be associated with improved efficacy and reduced incidence of undesirable side effects. As glutamatergic dysfunction has been linked to the etiology of schizophrenia, clinical studies with more potent mGlu2/3 agonists, such as LY404039, may be useful to explore the validity of this hypothesis.


Behavior, Animal/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclic S-Oxides/pharmacology , Mental Disorders/drug therapy , Receptors, Metabotropic Glutamate/agonists , Amino Acids/pharmacology , Amphetamine/pharmacology , Animals , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cyclic S-Oxides/chemistry , Cyclic S-Oxides/therapeutic use , Diazepam/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Mental Disorders/psychology , Mice , Molecular Structure , Motor Activity/drug effects , Phencyclidine/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Xanthenes/pharmacology
10.
Neuropharmacology ; 50(6): 755-60, 2006 May.
Article En | MEDLINE | ID: mdl-16427661

Atomoxetine is a selective inhibitor of norepinephrine transporters and is currently being used in the pharmacotherapy of attention deficit/hyperactivity disorder (ADHD). We have previously shown that atomoxetine increased extracellular (EX) concentrations of norepinephrine and dopamine in prefrontal cortex, but unlike the psychostimulant methylphenidate, did not alter dopamine(EX) in nucleus accumbens or striatum. Using the in vivo microdialysis technique in rat, we investigated the effects of atomoxetine on norepinephrine(EX) and dopamine(EX) concentrations in several other brain regions and also evaluated the role of inhibitory autoreceptors on atomoxetine-induced increases of norepinephrine(EX) concentrations. Atomoxetine (3mg/kg i.p.) increased norepinephrine(EX) robustly in prefrontal cortex, occipital cortex, lateral hypothalamus, dorsal hippocampus and cerebellum, suggesting that norepinephrine(EX) is increased throughout the brain by atomoxetine. In lateral hypothalamus and occipital cortex where dopamine(EX) was quantifiable, atomoxetine did not increase dopamine(EX) concentrations, in contrast to parallel increases of norepinephrine(EX) and dopamine(EX) in prefrontal cortex, indicating a unique effect in prefrontal cortex. Administration of the alpha(2)-adrenergic antagonist idazoxan 1h after atomoxetine resulted in increases in prefrontal cortical norepinephrine efflux greater than either compound alone, indicating an attenuating effect of the adrenergic autoreceptors on norepinephrine efflux.


Adrenergic Uptake Inhibitors/pharmacology , Brain/drug effects , Dopamine/metabolism , Extracellular Space/drug effects , Norepinephrine/metabolism , Propylamines/pharmacology , Analysis of Variance , Animals , Atomoxetine Hydrochloride , Male , Microdialysis/methods , Rats , Rats, Sprague-Dawley , Time Factors
11.
Nat Rev Drug Discov ; 4(9): 764-74, 2005 Sep.
Article En | MEDLINE | ID: mdl-16121130

In the early 1970s, evidence of the role of serotonin (5-hydroxytryptamine or 5-HT) in depression began to emerge and the hypothesis that enhancing 5-HT neurotransmission would be a viable mechanism to mediate antidepressant response was put forward. On the basis of this hypothesis, efforts to develop agents that inhibit the uptake of 5-HT from the synaptic cleft were initiated. These studies led to the discovery and development of the selective serotonin-reuptake inhibitor fluoxetine hydrochloride (Prozac; Eli Lilly), which was approved for the treatment of depression by the US FDA in 1987. Here, we summarize this research and discuss the many challenges that we encountered during the development of fluoxetine hydrochloride, which has now been widely acknowledged as a breakthrough drug for depression.


Fluoxetine/history , Depression/drug therapy , Drug Approval/methods , Drug Design , Drug Industry/history , Drug Industry/methods , Fluoxetine/therapeutic use , History, 20th Century , Humans
12.
FASEB J ; 18(12): 1410-2, 2004 Sep.
Article En | MEDLINE | ID: mdl-15231726

Dopaminergic dysfunction is an important pathogenetic factor for brain pathologies such as Parkinson's disease, ADHD, schizophrenia, and addiction as well as for metabolic disorders and anorexia. Dopaminergic neurons projecting from the midbrain to forebrain regions, such as the nucleus accumbens and the prefrontal cortex, regulate motor and cognitive functions and coordinate the patterned response of the organism to sensory, affective, and rewarding stimuli. In this study, we showed that dopaminergic neurotransmission is highly dependent on M4 cholinergic muscarinic receptor function. Using in vivo microdialysis, we found elevated dopamine (DA) basal values and enhanced DA response to psychostimulants in the nucleus accumbens of M4 knockout mice. We also demonstrated impaired homeostatic control of cholinergic activity that leads to increased basal acetylcholine efflux in the midbrain of these animals. Thus, loss of M4 muscarinic receptor control of cholinergic function effectuates a state of dopaminergic hyperexcitability. This may be responsible for pathological conditions, in which appetitive motivation as well as affective and cognitive processing is impaired. We propose that M4 receptor agonists could represent an innovative strategy for the treatment of pathologies associated with hyperdopaminergia.


Central Nervous System Diseases/pathology , Central Nervous System Diseases/physiopathology , Receptor, Muscarinic M4/metabolism , Synaptic Transmission , Acetylcholine/metabolism , Amphetamine/pharmacology , Animals , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/metabolism , Dopamine/metabolism , Gene Deletion , Homeostasis/drug effects , Mesencephalon/drug effects , Mesencephalon/metabolism , Mice , Mice, Knockout , Models, Neurological , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M2/metabolism , Receptor, Muscarinic M4/genetics , Scopolamine/pharmacology , Synaptic Transmission/drug effects , Time Factors
13.
J Neurochem ; 88(1): 194-202, 2004 Jan.
Article En | MEDLINE | ID: mdl-14675163

The metabotropic glutamate (mGlu2/3) receptor agonist, LY354740, exhibits anxiolytic-like properties in a number of rodent models. The present study utilized in vivo microdialysis to examine the effects of LY354740 on extracellular monoamine levels in the medial prefrontal cortex (mPFC) of animals subjected to 30 min immobilization stress. Immobilization stress significantly elevated extracellular levels of noradrenaline (NA) and dopamine (DA) in the mPFC, while systemic administration of LY354740 (30 mg/kg, s.c.) significantly attenuated immobilization-induced increases in both NA and DA. Reverse-dialysis of LY354740 (30 microm) into the mPFC significantly attenuated immobilization-induced increases in NA, but not DA without affecting basal levels of either amine. In separate studies in the presence of citalopram (1 microm; reverse dialysis into the mPFC), systemic administration of LY354740 attenuated immobilization-induced increases in NA and DA, but had no effect on serotonin (5-HT) levels. Co-administration of the selective mGlu2/3 receptor antagonist, LY341495, partially or fully reversed the attenuation in NA and DA levels produced by LY354740, respectively. Taken together, these data suggest that LY354740 may produce anti-stress actions, in part, by blocking stress-related increases in catecholamines in the mPFC via mGlu2/3 receptor stimulation.


Bridged Bicyclo Compounds/pharmacology , Dopamine/metabolism , Norepinephrine/metabolism , Prefrontal Cortex/metabolism , Receptors, Metabotropic Glutamate/agonists , Amino Acids/pharmacology , Animals , Catecholamines/metabolism , Citalopram/pharmacology , Dopamine/analysis , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Extracellular Fluid/chemistry , Extracellular Fluid/metabolism , Male , Microdialysis , Norepinephrine/analysis , Prefrontal Cortex/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/metabolism , Restraint, Physical , Selective Serotonin Reuptake Inhibitors/pharmacology , Stress, Physiological/metabolism , Xanthenes/pharmacology
14.
Neuropharmacology ; 46(2): 232-42, 2004 Feb.
Article En | MEDLINE | ID: mdl-14680761

Clinical studies of patients with treatment-resistant depression have shown that combined treatment with fluoxetine and olanzapine rapidly and significantly improved depressive symptoms. The present study used in vivo microdialysis to investigate the brain regional and dose effects of these drugs on extracellular monoamine concentrations in the rat prefrontal cortex, hypothalamus, nucleus accumbens and striatum. In the prefrontal cortex, the olanzapine/fluoxetine combination (3/10 mg/kg, respectively) increased catecholamine concentrations to a significantly greater extent than either drug alone (dopamine mean+/-S.E.M. percent of baseline: olanzapine (120 +/- 12.4), fluoxetine (123 +/- 6.2), combination (185 +/- 8.8); norepinephrine: olanzapine (124 +/- 7.2), fluoxetine (126 +/- 5.0), combination (215 +/- 15.8)). The combination also increased serotonin concentrations to 156 +/- 11.0% of baseline, but to a lesser extent than fluoxetine alone (210 +/- 14.5%). Similar synergistic effects of the combination were observed in the hypothalamus, but not in the other regions studied. The dose response effects of the drugs alone and in combination were complex, but larger doses of the combinations produced greater monoamine concentration increases than smaller dose combinations. The effects of the olanzapine/fluoxetine combination are meaningful in prefrontal cortex and hypothalamus due to their hypothesized role in the etiology and pharmacotherapy of depression. The wide-ranging neurochemical effects of this drug combination may make it particularly useful as a treatment for complex, resistant depressions.


Benzodiazepines/pharmacology , Biogenic Monoamines/metabolism , Brain/drug effects , Extracellular Fluid/drug effects , Fluoxetine/pharmacology , Animals , Benzodiazepines/administration & dosage , Brain/anatomy & histology , Corpus Striatum/drug effects , Dose-Response Relationship, Drug , Drug Combinations , Drug Synergism , Extracellular Fluid/metabolism , Fluoxetine/administration & dosage , Hypothalamus/drug effects , Male , Microdialysis , Nucleus Accumbens/drug effects , Olanzapine , Prefrontal Cortex/drug effects , Rats , Rats, Sprague-Dawley
15.
Neuropharmacology ; 45(7): 935-44, 2003 Dec.
Article En | MEDLINE | ID: mdl-14573386

Compounds that block both serotonin (5-HT) and norepinephrine (NE) transporters have been proposed to have improved antidepressant efficacy. We compared the ability of four dual transporter inhibitors-chlorimipramine, duloxetine, milnacipran and venlafaxine-to block monoamine transporters in vitro and in vivo and increase extracellular monoamines in rat brain. Inhibition of radioligand binding to clonal human monoamine transporters in vitro and in vivo in rats was determined. Extracellular concentrations of 5-HT and NE in rat prefrontal cortex (PFC) were quantified using the microdialysis technique. All compounds blocked binding to human 5-HT and NE transporters, although chlorimipramine and venlafaxine had markedly greater affinity for 5-HT than NE transporters. In vivo, chlorimipramine and duloxetine potently blocked both transporters, milnacipran blocked both with lower potency and venlafaxine only blocked the 5-HT transporter. Chlorimipramine and duloxetine increased robustly and approximately equally monoamine extracellular concentrations. Milnacipran produced only small increases in NE, whereas venlafaxine increased 5-HT markedly at the lower doses and both monoamines at high doses. Thus, the dual transporter inhibitors blocked 5-HT and NE transporters in vitro and in vivo with varying potency. Chlorimipramine, duloxetine, and high dose venlafaxine acted as dual transporter inhibitors in rat PFC and increased extracellular concentrations of the monoamines, indicating functional dual transporter inhibition.


Adrenergic Uptake Inhibitors/pharmacology , Biogenic Monoamines/metabolism , Carrier Proteins/metabolism , Extracellular Space/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Brain Chemistry/drug effects , Clomipramine/pharmacology , Cyclohexanols/pharmacology , Cyclopropanes/pharmacology , Dose-Response Relationship, Drug , Duloxetine Hydrochloride , In Vitro Techniques , Male , Microdialysis , Milnacipran , Norepinephrine/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Radioligand Assay , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Serotonin Agents/pharmacology , Thiophenes/pharmacology , Venlafaxine Hydrochloride , alpha-Methyltyrosine/pharmacology , p-Chloroamphetamine/pharmacology
16.
Br J Pharmacol ; 138(4): 544-53, 2003 Feb.
Article En | MEDLINE | ID: mdl-12598408

1. In order to explore potential therapeutic implications of cannabinoid antagonists, the effects of the prototypical cannabinoid antagonist SR141716A on monoamine efflux from the medial prefrontal cortex and the nucleus accumbens of the rat were investigated by in vivo microdialysis. 2. SR141716A moderately increased serotonin efflux and concentrations of its metabolite 5-HIAA, both in the medial prefrontal cortex and the nucleus accumbens, and increased norepinephrine, dopamine and their metabolites in the medial prefrontal cortex. In contrast, it had no effect on norepinephrine, dopamine and their metabolites in the nucleus accumbens. 3. At the same doses, SR141716A increased acetylcholine efflux in the medial prefrontal cortex, in agreement with previous studies; contrary to the effects in cortex, SR141716A had no effect on acetylcholine efflux in the nucleus accumbens. 4. The efficacy of SR141716A in the psychostimulant-induced hyperlocomotion and the forced swimming paradigms was also explored in mice. SR141716A attenuated phenylcyclidine- and d-amphetamine-induced hyperlocomotion, without affecting locomotor activity when administered alone, and decreased immobility in the forced swimming test. 5. These results suggest that the cortical selectivity in the release of catecholamines, dopamine in particular, induced by the cannabinoid antagonist SR141716A, its procholinergic properties, together with its mild stimulatory effects on serotonin and norepinephrine efflux make similar compounds unique candidates for the treatment of psychosis, affective and cognitive disorders.


Biogenic Monoamines/metabolism , Piperidines/pharmacology , Prefrontal Cortex/drug effects , Pyrazoles/pharmacology , Receptors, Drug/antagonists & inhibitors , Synaptic Transmission/drug effects , Animals , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Motor Activity/physiology , Piperidines/therapeutic use , Prefrontal Cortex/metabolism , Pyrazoles/therapeutic use , Rats , Rats, Wistar , Receptors, Cannabinoid , Receptors, Drug/metabolism , Rimonabant , Synaptic Transmission/physiology
17.
Neuropsychopharmacology ; 27(6): 949-59, 2002 Dec.
Article En | MEDLINE | ID: mdl-12464452

The selective serotonin reuptake inhibitor fluoxetine consists of equal amounts of R and S stereoisomers. In this study, we investigated the pharmacologic properties of the stereoisomers using transporter and receptor binding assays and in vivo microdialysis in freely moving rats. Binding to the transporter confirmed selectivity of R- and S-fluoxetine for the 5-HT transporter versus the dopamine (DA) and norepinephrine (NE) human transporters. Receptor binding studies demonstrated significant affinity of R-fluoxetine, but not S-fluoxetine, for human 5-HT(2A) and 5-HT(2C) receptor subtypes. Functional GTPgammaS binding studies indicated that R-fluoxetine is an antagonist at 5-HT(2A) and 5-HT(2C) receptors. In microdialysis studies, acute R- and S-fluoxetine increased extracellular levels of 5-HT, DA, and NE in prefrontal cortex (PFC), but R-fluoxetine caused significantly greater increases of catecholamines. R-fluoxetine increased extracellular levels of 5-HT and NE in PFC, nucleus accumbens, and hypothalamus, whereas it increased dopamine in PFC and hypothalamus, but not in DA-rich nucleus accumbens and striatum, thus indicating a regionally selective effect. The unexpected increases of extracellular catecholamines by a selective 5-HT uptake inhibitor like R-fluoxetine may be due to its antagonism of 5-HT(2C) receptors.


Dopamine/biosynthesis , Fluoxetine/pharmacology , Hypothalamus/drug effects , Norepinephrine/biosynthesis , Prefrontal Cortex/drug effects , Serotonin/biosynthesis , Animals , Dogs , Dose-Response Relationship, Drug , Extracellular Space/drug effects , Extracellular Space/metabolism , Humans , Hypothalamus/metabolism , Male , Microdialysis/methods , Prefrontal Cortex/metabolism , Protein Binding/drug effects , Protein Binding/physiology , Rats , Rats, Sprague-Dawley , Receptors, Serotonin/metabolism , Stereoisomerism
18.
Neuropsychopharmacology ; 27(5): 699-711, 2002 Nov.
Article En | MEDLINE | ID: mdl-12431845

The selective norepinephrine (NE) transporter inhibitor atomoxetine (formerly called tomoxetine or LY139603) has been shown to alleviate symptoms in Attention Deficit/Hyperactivity Disorder (ADHD). We investigated the mechanism of action of atomoxetine in ADHD by evaluating the interaction of atomoxetine with monoamine transporters, the effects on extracellular levels of monoamines, and the expression of the neuronal activity marker Fos in brain regions. Atomoxetine inhibited binding of radioligands to clonal cell lines transfected with human NE, serotonin (5-HT) and dopamine (DA) transporters with dissociation constants (K(i)) values of 5, 77 and 1451 nM, respectively, demonstrating selectivity for NE transporters. In microdialysis studies, atomoxetine increased extracellular (EX) levels of NE in prefrontal cortex (PFC) 3-fold, but did not alter 5-HT(EX) levels. Atomoxetine also increased DA(EX) concentrations in PFC 3-fold, but did not alter DA(EX) in striatum or nucleus accumbens. In contrast, the psychostimulant methylphenidate, which is used in ADHD therapy, increased NE(EX) and DA(EX) equally in PFC, but also increased DA(EX) in the striatum and nucleus accumbens to the same level. The expression of the neuronal activity marker Fos was increased 3.7-fold in PFC by atomoxetine administration, but was not increased in the striatum or nucleus accumbens, consistent with the regional distribution of increased DA(EX). We hypothesize that the atomoxetine-induced increase of catecholamines in PFC, a region involved in attention and memory, mediates the therapeutic effects of atomoxetine in ADHD. In contrast to methylphenidate, atomoxetine did not increase DA in striatum or nucleus accumbens, suggesting it would not have motoric or drug abuse liabilities.


Attention Deficit Disorder with Hyperactivity/metabolism , Dopamine/metabolism , Norepinephrine/metabolism , Prefrontal Cortex/drug effects , Propylamines/pharmacology , Animals , Atomoxetine Hydrochloride , Attention Deficit Disorder with Hyperactivity/drug therapy , Drug Synergism , Humans , Male , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley
19.
Psychopharmacology (Berl) ; 160(4): 353-61, 2002 Apr.
Article En | MEDLINE | ID: mdl-11919662

RATIONALE: The selective serotonin uptake inhibitor (SSRI) fluoxetine has been shown to not only increase the extracellular concentrations of serotonin, but also dopamine and norepinephrine extracellular concentrations in rat prefrontal cortex. The effect of other SSRIs on monoamine concentrations in prefrontal cortex has not been thoroughly studied. OBJECTIVE: The aim of this study was to compare the ability of five systemically administered selective serotonin uptake inhibitors to increase acutely the extracellular concentrations of serotonin, norepinephrine and dopamine in rat prefrontal cortex. METHODS: The extracellular concentrations of monoamines were determined in the prefrontal cortex of conscious rats using the microdialysis technique. RESULTS: Fluoxetine, citalopram, fluvoxamine, paroxetine and sertraline similarly increased the extracellular concentrations of serotonin from 2- to 4-fold above baseline. However, only fluoxetine produced robust and sustained increases in extracellular concentrations of norepinephrine and dopamine after acute systemic administration. Fluoxetine at the same dose blocked ex vivo binding to the serotonin transporter, but not the norepinephrine transporter, suggesting that the increase of catecholamines was not due to non-selective blockade of norepinephrine uptake. Prefrontal cortex extracellular concentrations of fluoxetine at the dose that increased extracellular monoamines were 242 nM, a concentration sufficient to block 5-HT(2C) receptors which is a potential mechanism for the fluoxetine-induced increase in catecholamines. CONCLUSION: Amongst the SSRIs examined, only fluoxetine acutely increases extracellular concentrations of norepinephrine and dopamine as well as serotonin in prefrontal cortex, suggesting that fluoxetine is an atypical SSRI.


Dopamine/metabolism , Extracellular Space/drug effects , Fluoxetine/pharmacology , Norepinephrine/metabolism , Prefrontal Cortex/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Dopamine/biosynthesis , Extracellular Space/metabolism , Male , Microdialysis , Norepinephrine/biosynthesis , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Selective Serotonin Reuptake Inhibitors/blood , Selective Serotonin Reuptake Inhibitors/metabolism
20.
Neuropharmacology ; 42(2): 181-90, 2002 Feb.
Article En | MEDLINE | ID: mdl-11804614

The finding that serotonin (5-HT) can modulate dopamine (DA) and norepinephrine (NE) release in the brain has led us to hypothesize that fluoxetine, a selective 5-HT reuptake inhibitor, may influence the ability of bupropion, a preferential DA and NE dual reuptake inhibitor, to modulate extracellular DA and NE concentrations in some brain areas. The present study was designed to evaluate this hypothesis by assessing the effects of fluoxetine on bupropion-induced changes in extracellular monoamine concentrations by means of in vivo microdialysis. Three mesocorticolimbic areas including hypothalamus (Ht), prefrontal cortex (Pfc) and nucleus accumbens (Acb) were selected based on their relevance to depression and antidepressant actions. In the Ht of untreated rats, bupropion dose-dependently (s.c.) increased extracellular DA and NE concentrations either in single injection study or in sequential injection study. Thus, 10 mg/kg of bupropion had no effect on the DA and NE concentrations, while 30 mg/kg of bupropion induced transient but significant increases (about 240% of the baselines), and 100 mg/kg of bupropion induced marked and persistent increases (over 600% of the baselines) in the DA and NE concentrations. In the rats pre-treated with fluoxetine (10 mg/kg, s.c., 90 min interval), the threshold dose of bupropion (10 mg/kg) significantly increased the DA and NE concentrations to more than 350% of the baselines, and 30 mg/kg of bupropion markedly increased the DA and NE concentrations to more than 570% of the baselines in the Ht. The fluoxetine pre-treatment also potentiated the DA increases induced by 10 mg/kg of bupropion in the Pfc (260% for bupropion alone vs 357% for the combination) and in the Acb (224% vs 645%). The bupropion-induced NE increases were potentiated by fluoxetine mainly in the Ht. Bupropion did not significantly affect the extracellular 5-HT concentrations in all the 3 brain areas tested. In summary, the present study demonstrated that bupropion can increase extracellular DA and NE concentrations in several mesocorticolimbic areas, which may have an impact on bupropion's antidepressant actions. Furthermore, fluoxetine can potentiate the bupropion-induced DA and NE increases, which may produce more effective and rapid antidepressant actions.


Bupropion/pharmacology , Cerebral Cortex/metabolism , Dopamine Uptake Inhibitors/pharmacology , Dopamine/metabolism , Extracellular Space/metabolism , Fluoxetine/pharmacology , Limbic System/metabolism , Norepinephrine/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Cerebral Cortex/drug effects , Chromatography, High Pressure Liquid , Extracellular Space/drug effects , Hematocrit , Limbic System/drug effects , Male , Microdialysis , Rats , Rats, Sprague-Dawley
...