Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Nutrients ; 15(21)2023 Oct 27.
Article En | MEDLINE | ID: mdl-37960223

Cancer cachexia (CC) is a multifactorial wasting syndrome characterized by a significant loss in lean and/or fat mass and represents a leading cause of mortality in cancer patients. Nutraceutical treatments have been proposed as a potential treatment strategy to mitigate cachexia-induced muscle wasting. However, contradictory findings warrant further investigation. The purpose of this study was to determine the effects of leucine supplementation on skeletal muscle in male and female ApcMin/+ mice (APC). APC mice and their wild-type (WT) littermates were given normal drinking water or 1.5% leucine-supplemented water (n = 4-10/group/sex). We measured the gene expression of regulators of inflammation, protein balance, and myogenesis. Leucine treatment lowered survival rates, body mass, and muscle mass in males, while in females, it had no effect on body or muscle mass. Leucine treatment altered inflammatory gene expression by lowering Il1b 87% in the APC group and decreasing Tnfa 92% in both WT and APC males, while it had no effect in females (p < 0.05). Leucine had no effect on regulators of protein balance and myogenesis in either sex. We demonstrated that leucine exacerbates moribundity in males and is not sufficient for mitigating muscle or fat loss during CC in either sex in the ApcMin/+ mouse.


Cachexia , Colorectal Neoplasms , Humans , Mice , Male , Female , Animals , Cachexia/metabolism , Leucine/pharmacology , Leucine/metabolism , Muscle, Skeletal/metabolism , Proteins/metabolism , Dietary Supplements , Morbidity , Colorectal Neoplasms/complications , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism
2.
Cell Biochem Funct ; 41(4): 478-489, 2023 Jun.
Article En | MEDLINE | ID: mdl-37150891

Cachexia is characterized by losses in lean body mass and its progression results in worsened quality of life and exacerbated outcomes in cancer patients. However, the role and impact of fibrosis during the early stages and development of cachexia in under-investigated. The purpose of this study was to determine if fibrosis occurs during cachexia development, and to evaluate this in both sexes. Female and male C57BL6/J mice were injected with phosphate-buffered saline or Lewis Lung Carcinoma (LLC) at 8-week of age, and tumors were allowed to develop for 1, 2, 3, or 4 weeks. 3wk and 4wk female tumor-bearing mice displayed a dichotomy in tumor growth and were reassigned to high tumor (HT) and low tumor (LT) groups. In vitro analyses were also performed on cocultured C2C12 and 3T3 cells exposed to LLC conditioned media. Immunohistochemistry and quantitative polymerase chain reaction (qPCR) analysis were used to investigate fibrosis and fibrosis-related signaling in skeletal muscle. Collagen deposition in skeletal muscle was increased in the 1wk, LT, and HT groups in female mice. However, collagen deposition was only increased in the 4wk group in male mice. In general, female mice displayed earlier alterations in extracellular matrix (ECM)-related genes beginning at 1wk post-LLC injection. Whereas this was not seen in males. While overall tumor burden is tightly correlated to cachexia development in both sexes, fibrotic development is not. Male mice did not exhibit early-stage alterations in ECM-related genes contrary to what was noted in female mice.


Cachexia , Carcinoma, Lewis Lung , Male , Female , Animals , Mice , Cachexia/etiology , Cachexia/pathology , Quality of Life , Muscle, Skeletal/pathology , Carcinoma, Lewis Lung/complications , Carcinoma, Lewis Lung/pathology , Mice, Inbred C57BL
3.
Sports Med Health Sci ; 4(3): 198-208, 2022 Sep.
Article En | MEDLINE | ID: mdl-36090923

The ability of skeletal muscle to regenerate from injury is crucial for locomotion, metabolic health, and quality of life. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1A) is a transcriptional coactivator required for mitochondrial biogenesis. Increased mitochondrial biogenesis is associated with improved muscle cell differentiation, however PGC1A's role in skeletal muscle regeneration following damage requires further investigation. The purpose of this study was to investigate the role of skeletal muscle-specific PGC1A overexpression during regeneration following damage. 22 C57BL/6J (WT) and 26 PGC1A muscle transgenic (A1) mice were injected with either phosphate-buffered saline (PBS, uninjured control) or Bupivacaine (MAR, injured) into their tibialis anterior (TA) muscle to induce skeletal muscle damage. TA muscles were extracted 3- or 28-days post-injury and analyzed for markers of regenerative myogenesis and protein turnover. Pgc1a mRNA was ∼10-20 fold greater in A1 mice. Markers of protein synthesis, AKT and 4EBP1, displayed decreases in A1 mice compared to WT at both timepoints indicating a decreased protein synthetic response. Myod mRNA was ∼75% lower compared to WT 3 days post-injection. WT mice exhibited decreased cross-sectional area of the TA muscle at 28 days post-injection with bupivacaine compared to all other groups. PGC1A overexpression modifies the myogenic response during regeneration.

4.
JCSM Rapid Commun ; 4(1): 3-15, 2021.
Article En | MEDLINE | ID: mdl-33693448

Cachexia presents in 80% of advanced cancer patients; however, cardiac atrophy in cachectic patients receives little attention. This cardiomyopathy contributes to increased occurrence of adverse cardiac events compared to age-matched population norms. Research on cardiac atrophy has focused on remodeling; however, alterations in metabolic properties may be a primary contributor. PURPOSE: Determine how cancer-induced cardiac atrophy alters mitochondrial turnover, mitochondrial mRNA translation machinery and in-vitro oxidative characteristics. METHODS: Lewis lung carcinoma (LLC) tumors were implanted in C57BL6/J mice and grown for 28days to induce cardiac atrophy. Endogenous metabolic species, and markers of mitochondrial function were assessed. H9c2 cardiomyocytes were cultured in LLC-conditioned media with(out) the antioxidant MitoTempo. Cells were analyzed for ROS, oxidative capacity, and hypoxic resistance. RESULTS: LLC heart weights were ~10% lower than controls. LLC hearts demonstrated ~15% lower optical redox ratio (FAD/FAD+NADH) compared to PBS controls. When compared to PBS, LLC hearts showed ~50% greater COX-IV and VDAC, attributed to ~50% lower mitophagy markers. mt-mRNA translation machinery was elevated similarly to markers of mitochondrial content. mitochondrial DNA-encoded Cytb was ~30% lower in LLC hearts. ROS scavengers GPx-3 and GPx-7 were ~50% lower in LLC hearts. Treatment of cardiomyocytes with LLC-conditioned media resulted in higher ROS (25%), lower oxygen consumption rates (10% at basal, 75% at maximal), and greater susceptibility to hypoxia (~25%) -- which was reversed by MitoTempo. CONCLUSION: These results substantiate metabolic cardiotoxic effects attributable to tumor-associated factors and provide insight into interactions between mitochondrial mRNA translation, ROS mitigation, oxidative capacity and hypoxia resistance.

5.
Exp Physiol ; 106(4): 994-1004, 2021 04.
Article En | MEDLINE | ID: mdl-33600045

NEW FINDINGS: What is the central question of this study? Following large traumatic loss of muscle tissue (volumetric muscle loss; VML), permanent functional and cosmetic deficits present themselves and regenerative therapies alone have not been able to generate a robust regenerative response: how does the addition of rehabilitative therapies affects the regenerative response? What is the main finding and its importance? Using exercise along with autologous muscle repair, we demonstrated accelerated muscle force recovery response post-VML. The accentuated force recovery 2 weeks post-VML would allow patients to return home sooner than allowed with current therapies. ABSTRACT: Skeletal muscle can regenerate from damage but is overwhelmed with extreme tissue loss, known as volumetric muscle loss (VML). Patients suffering from VML do not fully recover force output in the affected limb. Recent studies show that replacement tissue (i.e., autograph) into the VML defect site plus physical activity show promise for optimizing force recovery post-VML. The purpose of this study was to measure the effects of autologous repair and voluntary wheel running on force recovery post-VML. Thirty-two male Sprague-Dawley rats had 20% of their left tibialis anterior (LTA) excised then replaced and sutured into the intact muscle (autologous repair). The right tibialis anterior (RTA) acted as the contralateral control. Sixteen rats were given free access to a running wheel (Wheel) whereas the other 16 remained in a cage with the running wheel locked (Sed). At 2 and 8 weeks post-VML, the LTA underwent force testing; then the muscle was removed and morphological and gene expression analysis was conducted. At 2 weeks post-injury, normalized LTA force was 58% greater in the Wheel group compared to the Sed group. At 8 weeks post-VML, LTA force was similar between the Wheel and Sed groups but was still lower than the uninjured RTA. Gene expression analysis at 2 weeks post-VML showed the wheel groups had lower mRNA content of interleukin (IL)-1ß, IL-6 and tumour necrosis factor α compared to the Sed group. Overall, voluntary wheel running promoted early force recovery, but was not sufficient to fully restore force. The accentuated early force recovery is possibly due to a more pro-regenerative microenvironment.


Motor Activity , Regeneration , Animals , Disease Models, Animal , Humans , Male , Muscle, Skeletal , Rats , Rats, Sprague-Dawley , Regeneration/physiology
6.
Sports Med Health Sci ; 3(4): 212-217, 2021 Dec.
Article En | MEDLINE | ID: mdl-35783375

Diet-induced obesity has previously been shown to occur with the concomitant rise in the expression of proinflammatory cytokines and increases in collagen deposition. While it has been known that the regenerative process of skeletal muscle is altered in obese mice following an acute muscle injury, we sought to examine differences in the expression of various markers of extracellular matrix remodeling and repair. Our laboratory has previously reported an impaired inflammatory and protein synthetic signaling in these mice that may contribute negatively to the muscle regenerative process. To expand upon this previous investigation, tissues from these animals underwent further analysis to determine the extent of changes to the regenerative response within the extracellular matrix, including transcriptional changes in Collagen I, Collagen III, and Fibronectin. Here, we show that the expression of Collagen III:I is significantly increased at 3-days post-injury in obese injured animals compared to lean injured animals (p â€‹= â€‹0.0338), and by 28-days the obese injured animals exhibit a significantly lower Collagen III:I than their lean injured counterparts (p â€‹= â€‹0.0035). We demonstrate an impaired response to an acute muscle injury in obese mice when compared with lean counterparts. However, further studies are required to elucidate translational consequences of these changes, as well as to determine any causative mechanisms that may be driving this effect.

7.
Mech Ageing Dev ; 194: 111404, 2021 03.
Article En | MEDLINE | ID: mdl-33249192

The purpose of this study was to determine whether sarcopenic obesity accelerates impairments in muscle maintenance through the investigation of cell cycle progression and myogenic, inflammatory, catabolic and protein synthetic signaling in mouse gastrocnemius muscles. At 4 weeks old, 24 male C57BL/6 mice were fed either a high fat diet (HFD, 60 % fat) or normal chow (NC, 17 % fat) for either 8-12 weeks or 21-23 months. At 3-4 months or 22-24 months the gastrocnemius muscles were excised. In addition, plasma was taken for C2C12 differentiation experiments. Mean cross-sectional area (CSA) was reduced by 29 % in aged HFD fed mice compared to the aged NC mice. MyoD was roughly 50 % greater in the aged mice compared to young mice, whereas TNF-α and IGF-1 gene expression in aged HFD fed mice were reduced by 52 % and 65 % in comparison to aged NC fed mice, respectively. Myotubes pretreated with plasma from aged NC fed mice had 14 % smaller myotube diameter than their aged HFD counterparts. Aged obese mice had greater impairments to mediators of muscle maintenance as evident by reductions in muscle mass, CSA, along with alterations in cell cycle regulation and inflammatory and insulin signaling.


Muscle Development , Muscle, Skeletal/metabolism , MyoD Protein/metabolism , Obesity/complications , Sarcopenia/etiology , Age Factors , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Diet, High-Fat , Disease Models, Animal , Inflammation Mediators/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Male , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , MyoD Protein/genetics , Sarcopenia/metabolism , Sarcopenia/pathology , Signal Transduction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
8.
Appl Physiol Nutr Metab ; 45(3): 264-274, 2020 Mar.
Article En | MEDLINE | ID: mdl-31340136

Muscle disuse impairs muscle quality and is associated with increased mortality. Little is known regarding additive effects of multiple bouts of disuse, which is a common occurrence in patients experiencing multiple surgeries. Mitochondrial quality is vital to muscle health and quality; however, to date mitochondrial quality control has not been investigated following multiple bouts of disuse. Therefore, the purpose of this study was to investigate mitochondrial quality controllers during multiple bouts of disuse by hindlimb unloading. Male rats (n ∼ 8/group) were assigned to the following groups: hindlimb unloading for 28 days, hindlimb unloading with 56 days of reloading, 2 bouts of hindlimb unloading separated by a recovery phase of 56 days of reloading, 2 bouts of hindlimb unloading and recovery after each disuse, or control animals with no unloading. At designated time points, tissues were collected for messenger RNA and protein analysis of mitochondrial quality. Measures of mitochondrial biogenesis, such as proliferator-activated receptor gamma coactivator 1 alpha, decreased 30%-40% with unloading with no differences noted between unloading conditions. Measures of mitochondrial translation were 40%-50% lower in unloading conditions, with no differences noted between bouts of unloading. Measures of mitophagy were 40%-50% lower with reloading, with no differences noted between reloading conditions. In conclusion, disuse causes alterations in measures of mitochondrial quality; however, multiple bouts of disuse does not appear to have additive effects. Novelty Disuse atrophy causes multiple alterations to mitochondrial quality control. With sufficient recovery most detriments to mitochondrial quality control are fixed. In general, multiple bouts of disuse do not produce additive effects.


Hindlimb Suspension/methods , Mitochondria, Muscle/physiology , Muscular Atrophy/physiopathology , Organelle Biogenesis , Animals , Disease Models, Animal , Hindlimb/metabolism , Hindlimb/physiopathology , Hindlimb Suspension/statistics & numerical data , Male , Muscle, Skeletal/physiopathology , Rats , Rats, Sprague-Dawley
9.
Appl Physiol Nutr Metab ; 45(5): 500-512, 2020 May.
Article En | MEDLINE | ID: mdl-31618604

Cancer-associated bodyweight loss (cachexia) is a hallmark of many cancers and is associated with decreased quality of life and increased mortality. Hepatic function can dramatically influence whole-body energy expenditure and may therefore significantly influence whole-body health during cancer progression. The purpose of this study was to examine alterations in markers of hepatic metabolism and physiology during cachexia progression. Male C57BL/6J mice were injected with 1 × 106 Lewis Lung Carcinoma cells dissolved in 100 µL PBS and cancer was allowed to develop for 1, 2, 3, or 4 weeks. Control animals were injected with an equal volume of phosphate-buffered saline. Livers were analyzed for measures of metabolism, collagen deposition, protein turnover, and mitochondrial quality. Animals at 4 weeks had ∼30% larger livers compared with all other groups. Cancer progression was associated with altered regulators of fat metabolism. Additionally, longer duration of cancer development was associated with ∼3-fold increased regulators of collagen deposition as well as phenotypic collagen content, suggesting increased liver fibrosis. Mitochondrial quality control regulators appeared to be altered before any phenotypic alterations to collagen deposition. While induction of Akt was noted, downstream markers of protein synthesis were not altered. In conclusions, cancer cachexia progression is associated with hepatic pathologies, specifically liver fibrosis. Alterations to mitochondrial quality control mechanisms appear to precede this fibrotic phenotype, potentially suggesting mitochondrial mechanisms for the development of hepatic pathologies during the development and progression of cancer cachexia. Novelty Cachexia progression results in liver collagen deposition and fibrosis. Alterations in mitochondrial quality control may precede liver pathologies during cachexia.


Cachexia/physiopathology , Liver/physiology , Lung Neoplasms/complications , Animals , Cell Line, Tumor , Collagen/metabolism , Fatty Acids/metabolism , Gene Expression Regulation , Glucose/metabolism , Humans , Liver Cirrhosis , Male , Mice , Mice, Inbred C57BL , Mitochondria, Liver/physiology , Mitophagy/physiology , Neoplasms, Experimental/complications , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Exp Gerontol ; 121: 62-70, 2019 07 01.
Article En | MEDLINE | ID: mdl-30928679

Being both advanced in age and obese each contribute to cardiac hypertrophy in a unique manner. Electron transport complexes I and IV are implicated in deficient electron transport during cardiomyopathies and contain the majority of protein subunits that are transcribed and translated by machinery localized within the mitochondria. PURPOSE: To assess myocardial mt-mRNA translation factors in relation to mitochondrial content and mtDNA-encoded protein using a mouse model of aged obesity and to test the relationship of mt-mRNA translation initiation factor 2 (mtIF2) to oxidative capacity and the cellular oxidation-reduction (redox) state in cardiomyocytes. METHODS: Male C56BL/6 J mice fed lean or high fat diet were aged to either ~3 months or ~22 months, the heart was excised and analyzed using immunoblot and qPCR to assess differences in mitochondrial mRNA translation machinery. Using H9c2 cardiomyocytes, mtIF2 was knocked-down and oxidative metabolic characteristics assessed including oxidation/reduction state, bioenergetic flux, and hypoxic resistance was tested. RESULTS: Aged, obese mouse hearts were ~40% larger than young, lean controls and contained ~50% less mtIF2 protein alongside ~25-50% lower content of Cytb, a protein encoded by mtDNA. Reducing the level of mtIF2 by shRNA is associated with ~15-20% lower content of OXPHOS complex I and IV, ~30% lower optical redox ratio, ~40% oxygen reserve capacity, and ~20% less cell survival following hypoxia. CONCLUSION: We present evidence of altered mt-mRNA translation during cardiac hypertrophy in aged obesity. We build on these results by demonstrating the necessity of mtIF2 in maintaining oxidative characteristics of cardiac muscle cells.


Mitochondria, Heart/physiology , Myocardium/metabolism , RNA, Messenger/physiology , RNA, Mitochondrial/physiology , Aging/physiology , Animals , Body Weight/physiology , Down-Regulation/genetics , Male , Mice, Inbred C57BL , Mice, Obese , Mitochondrial Proteins/genetics , Obesity/metabolism , Oxidation-Reduction
11.
Physiol Genomics ; 50(12): 1071-1082, 2018 12 01.
Article En | MEDLINE | ID: mdl-30289747

Cancer-cachexia (CC) is a wasting condition directly responsible for 20-40% of cancer-related deaths. The mechanisms controlling development of CC-induced muscle wasting are not fully elucidated. Most investigations focus on the postcachectic state and do not examine progression of the condition. We recently demonstrated mitochondrial degenerations precede muscle wasting in time course progression of CC. However, the extent of muscle perturbations before wasting in CC is unknown. Therefore, we performed global gene expression analysis in CC-induced muscle wasting to enhance understanding of intramuscular perturbations across the development of CC. Lewis lung carcinoma (LLC) was injected into the hind-flank of C57BL6/J mice at 8 wk of age with tumor allowed to develop for 1, 2, 3, or 4 wk and compared with PBS-injected control. Muscle wasting was evident at 4 wk LLC. RNA sequencing of gastrocnemius muscle samples showed widespread alterations in LLC compared with PBS animals with largest differences seen in 4 wk LLC, suggesting extensive transcriptomic alterations concurrent to muscle wasting. Commonly altered pathways included: mitochondrial dysfunction and protein ubiquitination, along with other less studied processes in this condition regulating transcription/translation and cytoskeletal structure. Current findings present novel evidence of transcriptomic shifts and altered cellular pathways in CC-induced muscle wasting.


Cachexia/genetics , Muscle Fibers, Skeletal/pathology , Muscular Atrophy/genetics , Transcriptome/genetics , Animals , Cachexia/pathology , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/pathology , Disease Progression , Gene Expression Profiling/methods , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/pathology , Muscular Atrophy/pathology
12.
J Cachexia Sarcopenia Muscle ; 9(5): 987-1002, 2018 10.
Article En | MEDLINE | ID: mdl-30328290

BACKGROUND: Cancer cachexia occurs in approximately 80% of cancer patients and is a key contributor to cancer-related death. The mechanisms controlling development of tumour-induced muscle wasting are not fully elucidated. Specifically, the progression and development of cancer cachexia are underexplored. Therefore, we examined skeletal muscle protein turnover throughout the development of cancer cachexia in tumour-bearing mice. METHODS: Lewis lung carcinoma (LLC) was injected into the hind flank of C57BL6/J mice at 8 weeks age with tumour allowed to develop for 1, 2, 3, or 4 weeks and compared with PBS injected control. Muscle size was measured by cross-sectional area analysis of haematoxylin and eosin stained tibialis anterior muscle. 2 H2 O was used to assess protein synthesis throughout the development of cancer cachexia. Immunoblot and RT-qPCR were used to measure regulators of protein turnover. TUNEL staining was utilized to measure apoptotic nuclei. LLC conditioned media (LCM) treatment of C2C12 myotubes was used to analyse cancer cachexia in vitro. RESULTS: Muscle cross-sectional area decreased ~40% 4 weeks following tumour implantation. Myogenic signalling was suppressed in tumour-bearing mice as soon as 1 week following tumour implantation, including lower mRNA contents of Pax7, MyoD, CyclinD1, and Myogenin, when compared with control animals. AchRδ and AchRε mRNA contents were down-regulated by ~50% 3 weeks following tumour implantation. Mixed fractional synthesis rate protein synthesis was ~40% lower in 4 week tumour-bearing mice when compared with PBS controls. Protein ubiquitination was elevated by ~50% 4 weeks after tumour implantation. Moreover, there was an increase in autophagy machinery after 4 weeks of tumour growth. Finally, ERK and p38 MAPK phosphorylations were fourfold and threefold greater than control muscle 4 weeks following tumour implantation, respectively. Inhibition of p38 MAPK, but not ERK MAPK, in vitro partially rescued LCM-induced loss of myotube diameter. CONCLUSIONS: Our findings work towards understanding the pathophysiological signalling in skeletal muscle in the initial development of cancer cachexia. Shortly following the onset of the tumour-bearing state alterations in myogenic regulatory factors are apparent, suggesting early onset alterations in the capacity for myogenic induction. Cancer cachexia presents with a combination of a loss of protein synthesis and increased markers of protein breakdown, specifically in the ubiquitin-proteasome system. Also, p38 MAPK may be a potential therapeutic target to combat cancer cachexia via a p38-FOX01-atrogene-ubiquitin-proteasome mechanism.

13.
Exp Gerontol ; 111: 122-132, 2018 10 01.
Article En | MEDLINE | ID: mdl-29958999

Sarcopenic obesity (SO) is the comorbidity of age-related muscle wasting and obesity. SO increases the risk of heart disease, but little is known about the cellular signaling in cardiac muscle of SO individuals. AIM: The purpose of this study was to identify key cellular signaling alterations in cardiac muscle of sarcopenic obese mice. METHODS: Thirty-two, male C57BL/6J mice were randomly divided into lean and high-fat fed groups and raised to 3-4 months (young) or 20-22 months (aged) of age. Hearts were extracted and processed for Western blot and qRT-PCR analyses. RESULTS: Hearts of SO mice were 36-55% heavier than the young, obese or aged, lean groups. Markers downstream of Akt were not elevated in the SO group. p-p38:p38 MAPK was higher with age, and a 2-fold increase was observed in the obese vs. lean aged groups. pERK1/2:ERK1/2 MAPK was ~50-70% lower in the SO cardiac muscle compared to the young, obese group. pAMPK:AMPK was 50%-66% lower in the SO cardiac muscle compared to the obese and lean, aged groups. mRNA abundance of TNFα was ~2.5-fold higher in the SO group. CONCLUSION: Cardiac hypertrophy in SO is likely pathogenic as evidenced by the alterations in MAPK and AMPK protein content and lack of activation in the Akt/mTOR pathway.


AMP-Activated Protein Kinases/physiology , Cardiomegaly/pathology , Mitogen-Activated Protein Kinases/physiology , Sarcopenia/pathology , TOR Serine-Threonine Kinases/physiology , Animals , Blood Glucose/metabolism , Cardiomegaly/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Myocardium/metabolism , Random Allocation , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
14.
J Cachexia Sarcopenia Muscle ; 8(6): 926-938, 2017 Dec.
Article En | MEDLINE | ID: mdl-28845591

BACKGROUND: Cancer cachexia is largely irreversible, at least via nutritional means, and responsible for 20-40% of cancer-related deaths. Therefore, preventive measures are of primary importance; however, little is known about muscle perturbations prior to onset of cachexia. Cancer cachexia is associated with mitochondrial degeneration; yet, it remains to be determined if mitochondrial degeneration precedes muscle wasting in cancer cachexia. Therefore, our purpose was to determine if mitochondrial degeneration precedes cancer-induced muscle wasting in tumour-bearing mice. METHODS: First, weight-stable (MinStable) and cachectic (MinCC) ApcMin/+ mice were compared with C57Bl6/J controls for mRNA contents of mitochondrial quality regulators in quadriceps muscle. Next, Lewis lung carcinoma (LLC) cells or PBS (control) were injected into the hind flank of C57Bl6/J mice at 8 week age, and tumour allowed to develop for 1, 2, 3, or 4 weeks to examine time course of cachectic development. Succinate dehydrogenase stain was used to measure oxidative phenotype in tibialis anterior muscle. Mitochondrial quality and function were assessed using the reporter MitoTimer by transfection to flexor digitorum brevis and mitochondrial function/ROS emission in permeabilized adult myofibres from plantaris. RT-qPCR and immunoblot measured the expression of mitochondrial quality control and antioxidant proteins. Data were analysed by one-way ANOVA with Student-Newman-Kuels post hoc test. RESULTS: MinStable mice displayed ~50% lower Pgc-1α, Pparα, and Mfn2 compared with C57Bl6/J controls, whereas MinCC exhibited 10-fold greater Bnip3 content compared with C57Bl6/J controls. In LLC, cachectic muscle loss was evident only at 4 weeks post-tumour implantation. Oxidative capacity and mitochondrial content decreased by ~40% 4 weeks post-tumour implantation. Mitochondrial function decreased by ~25% by 3 weeks after tumour implantation. Mitochondrial degeneration was evident by 2 week LLC compared with PBS control, indicated by MitoTimer red/green ratio and number of pure red puncta. Mitochondrial ROS production was elevated by ~50 to ~100% when compared with PBS at 1-3 weeks post-tumour implantation. Mitochondrial quality control was dysregulated throughout the progression of cancer cachexia in tumour-bearing mice. In contrast, antioxidant proteins were not altered in cachectic muscle wasting. CONCLUSIONS: Functional mitochondrial degeneration is evident in LLC tumour-bearing mice prior to muscle atrophy. Contents of mitochondrial quality regulators across ApcMin/+ and LLC mice suggest impaired mitochondrial quality control as a commonality among pre-clinical models of cancer cachexia. Our data provide novel evidence for impaired mitochondrial health prior to cachectic muscle loss and provide a potential therapeutic target to prevent cancer cachexia.


Cachexia/etiology , Cachexia/metabolism , Mitochondria/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Neoplasms/complications , Animals , Antioxidants/metabolism , Cachexia/pathology , Carcinoma, Lewis Lung/pathology , Disease Models, Animal , Disease Progression , Humans , Male , Mice , Mice, Knockout , Microscopy, Fluorescence , Muscular Atrophy/pathology , Neoplasms/pathology , Oxidative Stress , Phenotype , Reactive Oxygen Species/metabolism
15.
Exp Physiol ; 102(9): 1194-1207, 2017 09 01.
Article En | MEDLINE | ID: mdl-28639297

NEW FINDINGS: What is the central question of this study? What are the individual and combined effects of muscle-specific peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) overexpression and physical activity during high-fat feeding on glucose and exercise tolerance? What is the main finding and its importance? Our main finding is that muscle-specific PGC-1α overexpression provides no protection against lipid-overload pathologies nor does it enhance exercise adaptations. Instead, physical activity, regardless of PGC-1α content, protects against high-fat diet-induced detriments. Activation of muscle autophagy was correlated with exercise protection, suggesting that autophagy might be a mediating factor for exercise-induced protection from lipid overload. The prevalence of glucose intolerance is alarmingly high. Efforts to promote mitochondrial biogenesis through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) to mitigate glucose intolerance have been controversial. However, physical activity remains a primary means to alleviate the condition. The aim of this study was to determine the combined effects of muscle-specific overexpression of PGC-1α and physical activity on glucose handling during diet-induced obesity. Wild-type (WT, ∼20) and PGC-1α muscle transgenic (MCK-PGC-1α, ∼20) mice were given a Western diet (WD) at 8 weeks age and allowed to consume food ab libitum throughout the study. At 12 weeks of age, all animals were divided into sedentary (SED) or voluntary wheel running (VWR) interventions. At 7, 11 and 15 weeks of age, animals underwent glucose tolerance tests (GTT) and graded exercise tests (GXT). At 16 weeks of age, tissues were collected. At 11 weeks, the MCK-PGC-1α animals had 50% greater glucose tolerance integrated area under the curve compared with WT. However, at 15 weeks, SED animals also had greater GTT integrated area under the curve compared with VWR, regardless of genotype; furthermore, SED animals demonstrated reduced exercise capacity compared with earlier time points, which was not seen in VWR animals. Voluntary distance run per day was correlated with GTT in VWR-WT, but not VWR-MCK-PGC-1α mice. Voluntary wheel running and genotype independently resulted in a greater LC3II/LC3I ratio, suggesting enhanced autophagosome formation, which was correlated with exercise-induced improvements in GTT. In conclusion, artificially increasing mitochondrial content does not protect from lipid-induced pathologies nor does it augment exercise adaptations. Physical activity ameliorates the effects of lipid overload-induced glucose intolerance, an effect that appears to be related to enhanced activation of autophagy.


Autophagy/physiology , Glucose/metabolism , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/metabolism , Motor Activity/physiology , Muscle, Skeletal/metabolism
16.
Physiol Genomics ; 49(5): 253-260, 2017 May 01.
Article En | MEDLINE | ID: mdl-28341621

Muscle atrophy is a hallmark of cancer cachexia resulting in impaired function and quality of life and cachexia is the immediate cause of death for 20-40% of cancer patients. Multiple microRNAs (miRNAs) have been identified as being involved in muscle development and atrophy; however, less is known specifically on miRNAs in cancer cachexia. The purpose of this investigation was to examine the miRNA profile of skeletal muscle atrophy induced by cancer cachexia to uncover potential miRNAs involved with this catabolic condition. Phosphate-buffered saline (PBS) or Lewis lung carcinoma cells (LLC) were injected into C57BL/6J mice at 8 wk of age. LLC animals were allowed to develop tumors for 4 wk to induce cachexia. Tibialis anterior muscles were extracted and processed to isolate small RNAs, which were used for miRNA sequencing. Sequencing results were assembled with mature miRNAs, and functions of miRNAs were analyzed by Ingenuity Pathway Analysis. LLC animals developed tumors that contributed to significantly smaller tibialis anterior muscles (18.5%) and muscle cross-sectional area (40%) compared with PBS. We found 371 miRNAs to be present in the muscle above background levels. Of these, nine miRNAs were found to be differentially expressed. Significantly altered groups of miRNAs were categorized into primary functionalities including cancer, cell-to-cell signaling, and cellular development among others. Gene network analysis predicted specific alterations of factors contributing to muscle size including Akt, FOXO3, and others. These results create a foundation for future research into the sufficiency of targeting these genes to attenuate muscle loss in cancer cachexia.


Cachexia/genetics , MicroRNAs/genetics , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Neoplasms, Experimental/genetics , Animals , Cachexia/complications , Cachexia/physiopathology , Gene Expression Regulation , Gene Regulatory Networks , Mice, Inbred C57BL , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Neoplasms, Experimental/complications
17.
Appl Physiol Nutr Metab ; 42(2): 148-156, 2017 Feb.
Article En | MEDLINE | ID: mdl-28084795

Obesity is a known risk factor for the development of hepatic disease; obesity-induced fatty liver can lead to inflammation, steatosis, and cirrhosis and is associated with degeneration of the mitochondria. Lifestyle interventions such as physical activity may ameliorate this condition. The purpose of this study was to investigate regulation of mitochondrial and autophagy quality control in liver following Western diet-induced obesity and voluntary physical activity. Eight-week-old C57BL/6J mice were fed a Western diet (WD) or normal chow (NC, control) for 4 weeks; afterwards, groups were divided into voluntary wheel running (VWR) or sedentary (SED) conditions for an additional 4 weeks. WD-SED animals had a median histology score of 2, whereas WD-VWR was not different from NC groups (median score 1). There was no difference in mRNA of inflammatory markers Il6 and Tnfa in WD animals. WD animals had 50% lower mitochondrial content (COX IV and Cytochrome C proteins), 50% lower Pgc1a mRNA content, and reduced content of mitochondrial fusion and fission markers. Markers of autophagy were increased in VWR animals, regardless of obesity, as measured by 50% greater LC3-II/I ratio and 40% lower p62 protein content. BNIP3 protein content was 30% less in WD animals compared with NC animals, regardless of physical activity. Diet-induced obesity results in derangements in mitochondrial quality control that appear to occur prior to the onset of hepatic inflammation. Moderate physical activity appears to enhance basal autophagy in the liver; increased autophagy may provide protection from hepatic fat accumulation.


Autophagy , Liver/pathology , Mitochondria, Liver/pathology , Motor Activity , Non-alcoholic Fatty Liver Disease/etiology , Obesity/physiopathology , Up-Regulation , Animals , Autophagosomes/immunology , Autophagosomes/metabolism , Autophagosomes/pathology , Biomarkers/metabolism , Diet, Western/adverse effects , Gene Expression Regulation , Hepatomegaly/etiology , Hepatomegaly/prevention & control , Insulin Resistance , Interleukin-6/genetics , Interleukin-6/metabolism , Liver/immunology , Liver/metabolism , Liver/physiopathology , Mice, Inbred C57BL , Mitochondria, Liver/immunology , Mitochondria, Liver/metabolism , Mitophagy , Obesity/immunology , Obesity/metabolism , Obesity/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
18.
Data Brief ; 8: 1426-32, 2016 Sep.
Article En | MEDLINE | ID: mdl-27617277

The data described herein is related to the article "Differential Effects of Leucine Supplementation in Young and Aged Mice at the Onset of Skeletal Muscle Regeneration" [1]. Aging is associated with a decreased ability of skeletal muscle to regenerate following injury. Leucine supplementation has been extensively shown, in young subjects, to promote protein synthesis during regeneration; however, the effects of leucine supplementation on the Akt/mTOR pathway in aged mice at the onset of muscle regeneration are not fully elucidated. In this article, we present data on the Akt/mTOR protein synthesis pathway at the onset of muscle regeneration in young and aged C57BL/6J mice that are and are not receiving leucine supplementation. More specifically, protein content of total Akt, mTOR, p70S6K and 4EBP-1 are presented. Additionally, we provide relative (phosphorylated:total) protein content comparisons of these targets as they present themselves in young and aged mice who have neither been injured nor received leucine supplementation. Lastly, markers of atrophy (FoxO1/O3, MuRF-1, Atrogin-1) are also reported in these young and aged control groups.

19.
Mech Ageing Dev ; 157: 7-16, 2016 07.
Article En | MEDLINE | ID: mdl-27327351

Aging decreases the ability of skeletal muscle to respond to injury. Leucine has been demonstrated to target protein synthetic pathways in skeletal muscle thereby enhancing this response. However, the effect of aging on leucine-induced alterations in protein synthesis at the onset of skeletal muscle regeneration has not been fully elucidated. The purpose of this study was to determine if aging alters skeletal muscle regeneration and leucine-induced alterations in markers of protein synthesis. The tibialis anterior of young (3 months) and aged (24 months) female C57BL/6J mice were injected with either bupivacaine or PBS, and the mice were given ad libitum access to leucine-supplemented or normal drinking water. Protein and gene expression of markers of protein synthesis and degradation, respectively, were analyzed at three days post-injection. Following injury in young mice, leucine supplementation was observed to elevate only p-p70S6K. In aged mice, leucine was shown to elicit higher p-mTOR content with and without injury, and p-4EBP-1 content post-injury. Additionally in aged mice, leucine was shown to elicit higher content of relative p70S6K post-injury. Our study shows that leucine supplementation affects markers of protein synthesis at the onset of skeletal muscle regeneration differentially in young and aged mice.


Aging/drug effects , Leucine/pharmacology , Muscle, Skeletal/physiology , Regeneration/drug effects , Animals , Bupivacaine/pharmacology , Mice , Muscle, Skeletal/injuries
20.
J Cell Biochem ; 117(8): 1775-87, 2016 08.
Article En | MEDLINE | ID: mdl-26683117

Insulin resistant diabetes, currently at epidemic levels in developed countries, begins in the skeletal muscle and is linked to altered protein turnover. microRNAs downregulate targeted mRNA translation decreasing the amount of translated protein, thereby regulating many cellular processes. Regulation of miRNAs and their function in skeletal muscle insulin resistance is largely unexplored. The purpose of this study was to identify the effects of insulin resistance on contents of skeletal muscle miRNAs with potential functions in protein turnover. We examined miRs -1, -16, -23, -27, -133a, -133b, and -206 in muscles of Zucker rats. miR-1 was 5- to 10-fold greater in obesity, whereas miRs-16 and -133b were repressed ∼50% in obese compared to lean rats, with no other alterations in miRNA contents. miR-16 correlated to protein synthesis in lean, but not obese rats. miR-16 reduction by lipid overload was verified in-vivo by diet-induced obesity and in-vitro using a diacylglycerol analog. A role for miR-16 in protein turnover of skeletal myocytes was established using transient overexpression and anti-miR inhibition. miR-16 overexpression resulted in lower protein synthesis (puromycin incorporation, ∼25-50%), mTOR (∼25%), and p70S6K1 (∼40%) in starved and insulin stimulated myoblasts. Conversely, anti-miR-16 increased basal protein synthesis (puromycin incorporation, ∼75%), mTOR (∼100%), and p70S6K1 (∼100%). Autophagy was enhanced by miR-16 overexpression (∼50% less BCL-2, ∼100% greater LC3II/I, ∼50% less p62) and impaired with miR-16 inhibition (∼45% greater BCL-2, ∼25% less total LC3, ∼50% greater p62). This study demonstrates reduced miR-16 during insulin resistance and establishes miR-16 control of protein accretion in skeletal muscle. J. Cell. Biochem. 117: 1775-1787, 2016. © 2015 Wiley Periodicals, Inc.


Autophagy , Insulin Resistance , MicroRNAs/metabolism , Muscle Proteins/metabolism , Myoblasts, Skeletal/metabolism , Obesity/metabolism , Animals , MicroRNAs/genetics , Muscle Proteins/genetics , Obesity/genetics , Rats , Rats, Zucker
...