Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Med Phys ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837408

RESUMEN

BACKGROUND: There currently exists no widespread high dose-rate (HDR) brachytherapy afterloader quality assurance (QA) tool for simultaneously assessing the afterloader's positional, temporal, transit velocity and air kerma strength accuracy. PURPOSE: The purpose of this study was to develop a precise and rigorous technique for performing daily QA of HDR brachytherapy afterloaders, incorporating QA of: dwell position accuracy, dwell time accuracy, transit velocity consistency and relative air kerma strength (AKS) of an Ir-192 source. METHOD: A Sharp ProGuide 240 mm catheter (Elekta Brachytherapy, Veenendaal, The Netherlands) was fixed 5 mm above a 256 channel epitaxial diode array 'dose magnifying glass' (DMG256) (Centre for Medical and Radiation Physics, University of Wollongong). Three dwell positions, each of 5.0 s dwell times, were spaced 13.0 mm apart along the array with the Flexitron HDR afterloader (Elekta Brachytherapy, Veenendaal, The Netherlands). The DMG256 was connected to a data acquisition system (DAQ) and a computer via USB2.0 link for live readout and post-processing. The outputted data files were analyzed using a Python script to provide positional and temporal localization of the Ir-192 source by tracking the centroid of the detected response. Measurements were repeated on a weekly basis, for a period of 5 weeks to determine the consistency of the measured parameters over an extended period. RESULTS: Using the DMG256 for relative AKS measurements resulted in measured values within 0.6%-3.0% of the expected activity over a 7-week period. The sub-millisecond temporal accuracy of the device allowed for measurements of the transit velocity with an average of (10.88 ± 1.01) cm/s for 13 mm steps. The dwell position localization for 1, 2, 3, 5, and 10 mm steps had an accuracy between 0.1 and 0.3 mm (3σ), with a fixed temporal accuracy of 10 ms. CONCLUSION: The DMG256 silicon strip detector allows for clinics to perform rigorous daily QA of HDR afterloader dwell position and dwell time accuracy with greater precision than the current standard methodology using closed circuit television and a stopwatch. Additionally, DMG256 unlocks the ability to perform measurements of transit velocity/time and relative AKS, which are not possible using current standard techniques.

2.
Med Phys ; 51(6): 4489-4503, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38432192

RESUMEN

BACKGROUND: The increasing use of complex and high dose-rate treatments in radiation therapy necessitates advanced detectors to provide accurate dosimetry. Rather than relying on pre-treatment quality assurance (QA) measurements alone, many countries are now mandating the use of in vivo dosimetry, whereby a dosimeter is placed on the surface of the patient during treatment. Ideally, in vivo detectors should be flexible to conform to a patient's irregular surfaces. PURPOSE: This study aims to characterize a novel hydrogenated amorphous silicon (a-Si:H) radiation detector for the dosimetry of therapeutic x-ray beams. The detectors are flexible as they are fabricated directly on a flexible polyimide (Kapton) substrate. METHODS: The potential of this technology for application as a real-time flexible detector is investigated through a combined dosimetric and flexibility study. Measurements of fundamental dosimetric quantities were obtained including output factor (OF), dose rate dependence (DPP), energy dependence, percentage depth dose (PDD), and angular dependence. The response of the a-Si:H detectors investigated in this study are benchmarked directly against commercially available ionization chambers and solid-state diodes currently employed for QA practices. RESULTS: The a-Si:H detectors exhibit remarkable dose linearities in the direct detection of kV and MV therapeutic x-rays, with calibrated sensitivities ranging from (0.580 ± 0.002) pC/cGy to (19.36 ± 0.10) pC/cGy as a function of detector thickness, area, and applied bias. Regarding dosimetry, the a-Si:H detectors accurately obtained OF measurements that parallel commercially available detector solutions. The PDD response closely matched the expected profile as predicted via Geant4 simulations, a PTW Farmer ionization chamber and a PTW ROOS chamber. The most significant variation in the PDD performance was 5.67%, observed at a depth of 3 mm for detectors operated unbiased. With an external bias, the discrepancy in PDD response from reference data was confined to ± 2.92% for all depths (surface to 250 mm) in water-equivalent plastic. Very little angular dependence is displayed between irradiations at angles of 0° and 180°, with the most significant variation being a 7.71% decrease in collected charge at a 110° relative angle of incidence. Energy dependence and dose per pulse dependence are also reported, with results in agreement with the literature. Most notably, the flexibility of a-Si:H detectors was quantified for sample bending up to a radius of curvature of 7.98 mm, where the recorded photosensitivity degraded by (-4.9 ± 0.6)% of the initial device response when flat. It is essential to mention that this small bending radius is unlikely during in vivo patient dosimetry. In a more realistic scenario, with a bending radius of 15-20 mm, the variation in detector response remained within ± 4%. After substantial bending, the detector's photosensitivity when returned to a flat condition was (99.1 ± 0.5)% of the original response. CONCLUSIONS: This work successfully characterizes a flexible detector based on thin-film a-Si:H deposited on a Kapton substrate for applications in therapeutic x-ray dosimetry. The detectors exhibit dosimetric performances that parallel commercially available dosimeters, while also demonstrating excellent flexibility results.


Asunto(s)
Radiometría , Silicio , Radiometría/instrumentación , Hidrógeno , Dosimetría in Vivo , Terapia por Rayos X/instrumentación , Humanos
3.
Med Phys ; 51(3): 2144-2154, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308854

RESUMEN

BACKGROUND: In-vivo source tracking has been an active topic of research in the field of high-dose rate brachytherapy in recent years to verify accuracy in treatment delivery. Although detection systems for source tracking are being developed, the allowable threshold of treatment error is still unknown and is likely patient-specific due to anatomy and planning variation. PURPOSE: The purpose of this study was to determine patient and catheter-specific shift error thresholds for in-vivo source tracking during high-dose-rate prostate brachytherapy (HDRPBT). METHODS: A module was developed in the previously described graphical processor unit multi-criteria optimization (gMCO) algorithm. The module generates systematic catheter shift errors retrospectively into HDRPBT treatment plans, performed on 50 patients. The catheter shift model iterates through the number of catheters shifted in the plan (from 1 to all catheters), the direction of shift (superior, inferior, medial, lateral, cranial, and caudal), and the magnitude of catheter shift (1-6 mm). For each combination of these parameters, 200 error plans were generated, randomly selecting the catheters in the plan to shift. After shifts were applied, dose volume histogram (DVH) parameters were re-calculated. Catheter shift thresholds were then derived based on plans where DVH parameters were clinically unacceptable (prostate V100 < 95%, urethra D0.1cc > 118%, and rectum Dmax > 80%). Catheter thresholds were also Pearson correlated to catheter robustness values. RESULTS: Patient-specific thresholds varied between 1 to 6 mm for all organs, in all shift directions. Overall, patient-specific thresholds typically decrease with an increasing number of catheters shifted. Anterior and inferior directions were less sensitive than other directions. Pearson's correlation test showed a strong correlation between catheter robustness and catheter thresholds for the rectum and urethra, with correlation values of -0.81 and -0.74, respectively (p < 0.01), but no correlation was found for the prostate. CONCLUSIONS: It was possible to determine thresholds for each patient, with thresholds showing dependence on shift direction, and number of catheters shifted. Not every catheter combination is explorable, however, this study shows the feasibility to determine patient-specific thresholds for clinical application. The correlation of patient-specific thresholds with the equivalent robustness value indicated the need for robustness consideration during plan optimization and treatment planning.


Asunto(s)
Braquiterapia , Neoplasias de la Próstata , Masculino , Humanos , Próstata , Estudios Retrospectivos , Dosificación Radioterapéutica , Neoplasias de la Próstata/radioterapia , Catéteres , Planificación de la Radioterapia Asistida por Computador
4.
Sensors (Basel) ; 24(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276383

RESUMEN

We assessed the accuracy of a prototype radiation detector with a built in CMOS amplifier for use in dosimetry for high dose rate brachytherapy. The detectors were fabricated on two substrates of epitaxial high resistivity silicon. The radiation detection performance of prototypes has been tested by ion beam induced charge (IBIC) microscopy using a 5.5 MeV alpha particle microbeam. We also carried out the HDR Ir-192 radiation source tracking at different depths and angular dose dependence in a water equivalent phantom. The detectors show sensitivities spanning from (5.8 ± 0.021) × 10-8 to (3.6 ± 0.14) × 10-8 nC Gy-1 mCi-1 mm-2. The depth variation of the dose is within 5% with that calculated by TG-43. Higher discrepancies are recorded for 2 mm and 7 mm depths due to the scattering of secondary particles and the perturbation of the radiation field induced in the ceramic/golden package. Dwell positions and dwell time are reconstructed within ±1 mm and 20 ms, respectively. The prototype detectors provide an unprecedented sensitivity thanks to its monolithic amplification stage. Future investigation of this technology will include the optimisation of the packaging technique.

5.
Phys Med Biol ; 68(13)2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37267990

RESUMEN

Objective. Microbeam radiation therapy (MRT) is an alternative emerging radiotherapy treatment modality which has demonstrated effective radioresistant tumour control while sparing surrounding healthy tissue in preclinical trials. This apparent selectivity is achieved through MRT combining ultra-high dose rates with micron-scale spatial fractionation of the delivered x-ray treatment field. Quality assurance dosimetry for MRT must therefore overcome a significant challenge, as detectors require both a high dynamic range and a high spatial resolution to perform accurately.Approach. In this work, a series of radiation hard a-Si:H diodes, with different thicknesses and carrier selective contact configurations, have been characterised for x-ray dosimetry and real-time beam monitoring applications in extremely high flux beamlines utilised for MRT at the Australian Synchrotron.Results. These devices displayed superior radiation hardness under constant high dose-rate irradiations on the order of 6000 Gy s-1, with a variation in response of 10% over a delivered dose range of approximately 600 kGy. Dose linearity of each detector to x-rays with a peak energy of 117 keV is reported, with sensitivities ranging from (2.74 ± 0.02) nC/Gy to (4.96 ± 0.02) nC/Gy. For detectors with 0.8µm thick active a-Si:H layer, their operation in an edge-on orientation allows for the reconstruction of micron-size beam profiles (microbeams). The microbeams, with a nominal full-width-half-max of 50µm and a peak-to-peak separation of 400µm, were reconstructed with extreme accuracy. The full-width-half-max was observed as 55 ± 1µm. Evaluation of the peak-to-valley dose ratio and dose-rate dependence of the devices, as well as an x-ray induced charge (XBIC) map of a single pixel is also reported.Significance. These devices based on novel a-Si:H technology possess a unique combination of accurate dosimetric performance and radiation resistance, making them an ideal candidate for x-ray dosimetry in high dose-rate environments such as FLASH and MRT.


Asunto(s)
Silicio , Sincrotrones , Rayos X , Australia , Radiometría/métodos
6.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36234601

RESUMEN

In this paper, by means of high-resolution photoemission, soft X-ray absorption and atomic force microscopy, we investigate, for the first time, the mechanisms of damaging, induced by neutron source, and recovering (after annealing) of p-i-n detector devices based on hydrogenated amorphous silicon (a-Si:H). This investigation will be performed by mean of high-resolution photoemission, soft X-Ray absorption and atomic force microscopy. Due to dangling bonds, the amorphous silicon is a highly defective material. However, by hydrogenation it is possible to reduce the density of the defect by several orders of magnitude, using hydrogenation and this will allow its usage in radiation detector devices. The investigation of the damage induced by exposure to high energy irradiation and its microscopic origin is fundamental since the amount of defects determine the electronic properties of the a-Si:H. The comparison of the spectroscopic results on bare and irradiated samples shows an increased degree of disorder and a strong reduction of the Si-H bonds after irradiation. After annealing we observe a partial recovering of the Si-H bonds, reducing the disorder in the Si (possibly due to the lowering of the radiation-induced dangling bonds). Moreover, effects in the uppermost coating are also observed by spectroscopies.

7.
Cancers (Basel) ; 14(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36291920

RESUMEN

High dose rate radiotherapies such as FLASH and microbeam radiotherapy (MRT) both have developed to the stage of first veterinary studies within the last decade. With the development of a new research tool for high dose rate radiotherapy at the end station P61A of the synchrotron beamline P61 on the DESY campus in Hamburg, we increased the research capacity in this field to speed up the translation of the radiotherapy techniques which are still experimental, from bench to bedside. At P61, dose rates of several hundred Gy/s can be delivered. Compared to dedicated biomedical beamlines, the beam width available for MRT experiments is a very restrictive factor. We developed two model systems specifically to suit these specific technical parameters and tested them in a first set of experiments.

8.
Brachytherapy ; 21(6): 943-955, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36068155

RESUMEN

PURPOSE: The purpose of this study was to determine the feasibility of online adaptive transrectal ultrasound (TRUS)-based high-dose-rate prostate brachytherapy (HDRPBT) through retrospective simulation of source positioning and catheter swap errors on patient treatment plans. METHOD: Source positioning errors (catheter shifts in 1 mm increments in the cranial/caudal, anterior/posterior, and medial/lateral directions up to ±6 mm) and catheter swap errors (between the most and least heavily weighted) were introduced retrospectively into DICOM treatment plans of 20 patients that previously received TRUS HDRPBT. Dose volume histogram (DVH) indices were monitored as errors were introduced sequentially into individual catheters, simulating potential errors throughout treatment. Whenever DVH indices were outside institution thresholds: prostate V100% <95%, urethra D0.1cc >118% and rectum Dmax >80%, the plan was adapted using remaining catheters (i.e., simulating previous catheters as previously delivered). The final DVH indices were recorded. RESULTS: Prostate coverage (V100% >95%) could be maintained for source position errors up to 6 mm through online plan adaptation. The source position error at which the urethra D0.1cc and rectum Dmax was able to return to clinically acceptable levels using online adaptation varied between 6 mm to 1 mm, depending on the direction of the source position error and patient anatomy. After introduction of catheter swap errors to patient plans, prostate V100% was recoverable using online adaptation to near original plan characteristics. Urethra D0.1cc and rectum Dmax showed less recoverability. CONCLUSION: Online adaptive HDRPBT maintains the prostate V100% to clinically acceptable values for majority of directional shifts. However, the current online adaptive method may not correct for source position errors near organs at risk.


Asunto(s)
Braquiterapia , Neoplasias de la Próstata , Masculino , Humanos , Braquiterapia/métodos , Próstata/diagnóstico por imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Neoplasias de la Próstata/radioterapia
9.
Med Phys ; 49(6): 3529-3537, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35388456

RESUMEN

PURPOSE: The purpose of this study was to examine the effect of departmental planning techniques on appropriate in-vivo source tracking error thresholds for high dose rate (HDR) prostate brachytherapy (BT) treatments, and to determine if a single in-vivo source tracking error threshold would be appropriate for the same patient anatomy. METHODS: The prostate, rectum, and urethra were contoured on a single patient transrectal ultrasound (TRUS) dataset. Anonymized DICOM files were disseminated to 16 departments who created an HDR prostate BT treatment plan on the dataset with a prescription dose of 15 Gy in a single fraction. Departments were asked to follow their own local treatment planning guidelines. Source positioning errors were then simulated in the 16 treatment plans and the effect on dose-volume histogram (DVH) indices calculated. Change in DVH indices were used to determine appropriate in-vivo source tracking error thresholds. Plans were considered to require intervention if the following DVH conditions occurred: prostate V100% < 90%, urethra D0.1cc > 118%, and rectumtt Dmax > 80%. RESULTS: There was wide variation in appropriate in-vivo source tracking error thresholds among the 16 participating departments, ranging from 1 to 6 mm. Appropriate in-vivo source tracking error thresholds were also found to depend on the direction of the source positioning error and the endpoint. A robustness parameter was derived, and found to correlate with the sensitivity of plans to source positioning errors. CONCLUSIONS: A single HDR prostate BT in-vivo source tracking error threshold cannot be applied across multiple departments, even for the same patient anatomy. The burden on in-vivo source tracking devices may be eased through improving HDR prostate BT plan robustness during the plan optimisation phase.


Asunto(s)
Braquiterapia , Neoplasias de la Próstata , Humanos , Masculino , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
10.
J Synchrotron Radiat ; 29(Pt 1): 125-137, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985430

RESUMEN

Successful transition of synchrotron-based microbeam radiation therapy (MRT) from pre-clinical animal studies to human trials is dependent upon ensuring that there are sufficient and adequate measures in place for quality assurance purposes. Transmission detectors provide researchers and clinicians with a real-time quality assurance and beam-monitoring instrument to ensure safe and accurate dose delivery. In this work, the effect of transmission detectors of different thicknesses (10 and 375 µm) upon the photon energy spectra and dose deposition of spatially fractionated synchrotron radiation is quantified experimentally and by means of a dedicated Geant4 simulation study. The simulation and experimental results confirm that the presence of the 375 µm thick transmission detector results in an approximately 1-6% decrease in broad-beam and microbeam peak dose. The capability to account for the reduction in dose and change to the peak-to-valley dose ratio justifies the use of transmission detectors as thick as 375 µm in MRT provided that treatment planning systems are able to account for their presence. The simulation and experimental results confirm that the presence of the 10 µm thick transmission detector shows a negligible impact (<0.5%) on the photon energy spectra, dose delivery and microbeam structure for both broad-beam and microbeam cases. Whilst the use of 375 µm thick detectors would certainly be appropriate, based upon the idea of best practice the authors recommend that 10 µm thick transmission detectors of this sort be utilized as a real-time quality assurance and beam-monitoring tool during MRT.


Asunto(s)
Silicio , Sincrotrones , Animales , Australia , Humanos , Método de Montecarlo , Dosificación Radioterapéutica
11.
ACS Appl Mater Interfaces ; 13(48): 57703-57712, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34806354

RESUMEN

There is growing interest in the development of novel materials and devices capable of ionizing radiation detection for medical applications. Organic semiconductors are promising candidates to meet the demands of modern detectors, such as low manufacturing costs, mechanical flexibility, and a response to radiation equivalent to human tissue. However, organic semiconductors have typically been employed in applications that convert low energy photons into high current densities, for example, solar cells and LEDs, and thus existing design rules must be re-explored for ionizing radiation detection where high energy photons are converted into typically much lower current densities. In this work, we report the optoelectronic and X-ray dosimetric response of a tissue equivalent organic photodetector fabricated with solution-based inks prepared from polymer donor poly(3-hexylthiophene) (P3HT) blended with either a non-fullerene acceptor (5Z,5'Z)-5,5'-((7,7'-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methanylylidene))bis(3-ethyl-2-thioxothiazolidin-4-one) (o-IDTBR) or a fullerene acceptor, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Indirect detection of X-rays was achieved via coupling of organic photodiodes with a plastic scintillator. Both detectors displayed an excellent response linearity with dose, with sensitivities to 6 MV photons of 263.4 ± 0.6 and 114.2 ± 0.7 pC/cGy recorded for P3HT:PCBM and P3HT:o-IDTBR detectors, respectively. Both detectors also exhibited a fast temporal response, able to resolve individual 3.6 µs pulses from the linear accelerator. Energy dependence measurements highlighted that the photodetectors were highly tissue equivalent, though an under-response in devices compared to water by up to a factor of 2.3 was found for photon energies of 30-200 keV due to the response of the plastic scintillator. The P3HT:o-IDTBR device exhibited a higher stability to radiation, showing just an 18.4% reduction in performance when exposed to radiation doses of up to 10 kGy. The reported devices provide a successful demonstration of stable, printable, flexible, and tissue-equivalent radiation detectors with energy dependence similar to other scintillator-based detectors used in radiotherapy.


Asunto(s)
Materiales Biomiméticos/química , Polímeros/química , Humanos , Ensayo de Materiales , Estructura Molecular , Radiación Ionizante , Semiconductores , Rayos X
12.
J Synchrotron Radiat ; 28(Pt 5): 1444-1454, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475292

RESUMEN

Spatially fractionated ultra-high-dose-rate beams used during microbeam radiation therapy (MRT) have been shown to increase the differential response between normal and tumour tissue. Quality assurance of MRT requires a dosimeter that possesses tissue equivalence, high radiation tolerance and spatial resolution. This is currently an unsolved challenge. This work explored the use of a 500 nm thick organic semiconductor for MRT dosimetry on the Imaging and Medical Beamline at the Australian Synchrotron. Three beam filters were used to irradiate the device with peak energies of 48, 76 and 88 keV with respective dose rates of 3668, 500 and 209 Gy s-1. The response of the device stabilized to 30% efficiency after an irradiation dose of 30 kGy, with a 0.5% variation at doses of 35 kGy and higher. The calibration factor after pre-irradiation was determined to be 1.02 ±â€…0.005 µGy per count across all three X-ray energy spectra, demonstrating the unique advantage of using tissue-equivalent materials for dosimetry. The percentage depth dose curve was within ±5% of the PTW microDiamond detector. The broad beam was fractionated into 50 microbeams (50 µm FHWM and 400 µm centre-to-centre distance). For each beam filter, the FWHMs of all 50 microbeams were measured to be 51 ±â€…1.4, 53 ±â€…1.4 and 69 ±â€…1.9 µm, for the highest to lowest dose rate, respectively. The variation in response suggested the photodetector possessed dose-rate dependence. However, its ability to reconstruct the microbeam profile was affected by the presence of additional dose peaks adjacent to the one generated by the X-ray microbeam. Geant4 simulations proved that the additional peaks were due to optical photons generated in the barrier film coupled to the sensitive volume. The simulations also confirmed that the amplitude of the additional peak in comparison with the microbeam decreased for spectra with lower peak energies, as observed in the experimental data. The material packaging can be optimized during fabrication by solution processing onto a flexible substrate with a non-fluorescent barrier film. With these improvements, organic photodetectors show promising prospects as a cost-effective high spatial resolution tissue-equivalent flexible dosimeter for synchrotron radiation fields.


Asunto(s)
Radioterapia/instrumentación , Semiconductores , Fraccionamiento de la Dosis de Radiación , Diseño de Equipo , Dosímetros de Radiación , Dosificación Radioterapéutica , Sincrotrones , Rayos X
13.
Phys Med ; 89: 20-28, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34343763

RESUMEN

PURPOSE: In this work, the potential of an innovative "edgeless" silicon diode was evaluated as a response to the still unmet need of a reliable tool for plan dosimetry verification of very high dose, non-coplanar, patient-specific radiosurgery treatments. In order to prove the effectiveness of the proposed technology, we focused on radiosurgical treatments for functional disease like tremor or pain. METHODS: The edgeless diodes response has been validated with respect to clinical practice standard detectors by reproducing the reference dosimetry data adopted for the Treatment Planning System. In order to evaluate the potential for radiosurgery patient-specific treatment plan verification, the anthropomorphic phantom Alderson RANDO has been adopted along with three edgeless sensors, one placed in the centre of the Planning Target Volume, one superiorly and one inferiorly. RESULTS: The reference dosimetry data obtained from the edgeless detectors are within 2.6% for output factor, off-axis ratio and well within 2% for tissue phantom ratio when compared to PTW 60,018 diode. The edgeless detectors measure a dose discrepancy of approximately 3.6% from the mean value calculated by the TPS. Larger discrepancies are obtained in very steep gradient dose regions when the sensors are placed outside the PTV. CONCLUSIONS: The angular independent edgeless diode is proposed as an innovative dosimeter for patient quality assurance of brain functional disorders and other radiosurgery treatments. The comparison of the diode measurements with TPS calculations confirms that edgeless diodes are suitable candidates for patient-specific dosimetric verification in very high dose ranges delivered by non-isocentric stereotactic radiosurgery modalities.


Asunto(s)
Radiocirugia , Humanos , Fantasmas de Imagen , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Silicio
14.
Med Phys ; 48(8): 4532-4541, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33908049

RESUMEN

PURPOSE: A 5 and 10 µm thin silicon on insulator (SOI) 3D mushroom microdosimeter was used to characterize both the in-field and out-of-field of a 62 MeV proton beam. METHODS: The SOI mushroom microdosimeter consisted of an array of cylindrical sensitive volumes (SVs), developed by the Centre for Medical Radiation Physics, University of Wollongong, was irradiated with 62 MeV protons at the CATANA (Centro di AdroTerapia Applicazioni Nucleari Avanzate) facility in Catania, Italy, a facility dedicated to the radiation treatment of ocular melanomas. Dose mean lineal energy, ( y D ¯ ), values were obtained at various depths in PMMA along a pristine and spread out Bragg peak (SOBP). The measured microdosimetric spectra at each position were then used as inputs into the modified Microdosimetric Kinetic Model (MKM) to derive the RBE for absorbed dose in a middle of the SOBP 2Gy (RBED ). Microdosimetric spectra were obtained with both the 5 and 10 µm 3D SOI microdosimeters, with a focus on the distal part of the BP. The in-field and out-of-field measurement configurations along the Bragg curve were modeled in Geant4 for comparison with experimental results. Lateral out-of-field measurements were performed to study secondary particles' contribution to normal tissue's dose, up to 12 mm from the edge of the beam field, and quality factor and dose equivalent results were obtained. RESULTS: Comparison between experimental and simulation results showed good agreement between one another for both the pristine and SOBP beams in terms of y D ¯ and RBED. Though a small discrepancy between experiment and simulation was seen at the entrance of the Bragg curve, where experimental results were slightly lower than Geant4. The dose equivalent value measured 12 mm from the edge of the target volume was 1.27 ± 0.15 mSv/Gy with a Q ¯ value of 2.52 ± 0.30, both of which agree within uncertainty with Geant4 simulation. CONCLUSIONS: These results demonstrate that SOI microdosimeters are an effective tool to predict RBED in-field as well as dose equivalent monitoring out-of-field to provide insight to probability of second cancer generation.


Asunto(s)
Terapia de Protones , Radiactividad , Humanos , Protones , Radiometría , Efectividad Biológica Relativa , Silicio
15.
J Appl Clin Med Phys ; 22(2): 185-193, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33440049

RESUMEN

PURPOSE: Stereotactic radiosurgery (SRS) can be delivered with a standard linear accelerator (linac). At institutions having more than one linac, beam matching is common practice. In the literature, there are indications that machine central axis (CAX) matching for broad fields does not guarantee matching of small fields with side ≤2 cm. There is no indication on how matching for broad fields on axis translates to matching small fields off axis. These are of interest to multitarget single-isocenter (MTSI) SRS planning and the present work addresses that gap in the literature. METHODS: We used 6 MV flattening filter free (FFF) beams from four Elekta VersaHD® linacs equipped with an Agility™ multileaf collimator (MLC). The linacs were strictly matched for broad fields on CAX. We compared output factors (OPFs) and effective field size, measured concurrently using a novel 2D solid-state dosimeter "Duo" with a spatial resolution of 0.2 mm, in square and rectangular static fields with sides from 0.5 to 2 cm, either on axis or away from it by 5 to 15 cm. RESULTS: Among the four linacs, OPF for fields ≥1 × 1 cm2 ranged 1.3% on CAX, whereas off axis a maximum range of 1.9% was observed at 15 cm. A larger variability in OPF was noted for the 0.5 × 0.5 cm2 field, with a range of 5.9% on CAX, which improved to a maximum of 2.3% moving off axis. Two linacs showed greater consistency with a range of 1.4% on CAX and 2.2% at 15 cm off axis. Between linacs, the effective field size varied by <0.04 cm in most cases, both on and off axis. Tighter matching was observed for linacs with a similar focal spot position. CONCLUSIONS: Verification of small-field consistency for matched linacs used for SRS is an important task for dosimetric validation. A significant benefit of concurrent measurement of field size and OPF allowed for a comprehensive assessment using a novel diode array. Our study showed the four linacs, strictly matched for broad fields on CAX, were still matched down to a field size of 1 x 1 cm2 on and off axis.


Asunto(s)
Radiocirugia , Humanos , Aceleradores de Partículas , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
16.
Phys Med Biol ; 65(16): 16TR01, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32604077

RESUMEN

Semiconductor dosimeters are ubiquitous in modern external-beam radiation therapy. They possess key features. The response, electronically available in real time, is stable and linear with absorbed dose for given irradiation conditions; the radiation-sensitive volume can be rather small in size, while retaining mechanical strength and high sensitivity. We describe three common semiconductor dosimeters: diodes, metal-oxide-semiconductor field-effect transistors and diamonds. We discuss in detail their operation principles and applications in modern external-beam radiation therapy, primarily with megavoltage photon beams. We also explore their use in proton and heavy ion therapy, and in experimental radiotherapy techniques such as synchrotron-based micro-beam radiation therapy.


Asunto(s)
Dosímetros de Radiación/normas , Radiometría/métodos , Radiometría/normas , Planificación de la Radioterapia Asistida por Computador/normas , Semiconductores , Sincrotrones/normas , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Sincrotrones/instrumentación
17.
Med Phys ; 47(8): 3658-3668, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32395821

RESUMEN

PURPOSE: The development of novel detectors for dosimetry in advanced radiotherapy modalities requires materials that have a water equivalent response to ionizing radiation such that characterization of radiation beams can be performed without the need for complex calibration procedures and correction factors. Organic semiconductors are potentially an ideal technology in fabricating devices for dosimetry due to tissue equivalence, mechanical flexibility, and relatively cheap manufacturing cost. The response of a commercial organic photodetector (OPD), coupled to a plastic scintillator, to ionizing radiation from a linear accelerator and orthovoltage x-ray tube has been characterized to assess its potential as a dosimeter for radiotherapy. The radiation hardness of the OPD has also been investigated to demonstrate its longevity for such applications. METHODS: Radiation hardness measurements were achieved by observing the response of the OPD to the visible spectrum and 70 keV x rays after pre-exposure to 40 kGy of ionizing radiation. The response of a preirradiated OPD to 6-MV photons from a linear accelerator in reference conditions was compared to a nonirradiated OPD with respect to direct and indirect (RP400 plastic scintillator) detection mechanisms. Dose rate dependence of the OPD was measured by varying the surface-to-source distance between 90 and 300 cm. Energy dependence was characterized from 29.5 to 129 keV with an x-ray tube. The percentage depth dose (PDD) curves were measured from 0.5 to 20 cm and compared to an ionization chamber. RESULTS: The OPD sensitivity to visible light showed substantial degradation of the broad 450 to 600 nm peak from the donor after irradiation to 40 kGy. After irradiation, the spectral shape has a dominant absorbance peak at 370 nm, as the acceptor better withstood radiation damage. Its response to x rays stabilized to 30% after 35 kGy, with a 0.5% difference between 770 Gy increments. The OPD exhibited reproducible detection of ionizing radiation when coupled with a scintillator. Indirect detection showed a linear response from 25 to 500 cGy and constant response to dose rates from 0.31 Gy/pulse to 3.4 × 10-4  Gy/pulse. However, without the scintillator, response increased by 100% at low dose rates. Energy independence between 100 keV and 1.2 MeV advocates their use as a dosimeter without beam correction factors. A dependence on the scintillator thickness used during a comparison of the PDD to the ionizing chamber was identified. A 1-mm-thick scintillator coupled with the OPD demonstrated the best agreement of ± 3%. CONCLUSIONS: The response of OPDs to ionizing radiation has been characterized, showing promising use as a dosimeter when coupled with a plastic scintillator. The mechanisms of charge transport and trapping within organic materials varies for visible and ionizing radiation, due to differing properties for direct and indirect detection mechanisms and observing a substantial decrease in sensitivity to the visible spectrum after 40 kGy. This study proved that OPDs produce a stable response to 6-MV photons, and with a deeper understanding of the charge transport mechanisms due to exposure to ionizing radiation, they are promising candidates as the first flexible, water equivalent, real-time dosimeter.


Asunto(s)
Dosímetros de Radiación , Radiometría , Aceleradores de Partículas , Fotones , Semiconductores
18.
J Appl Clin Med Phys ; 21(8): 278-288, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32441884

RESUMEN

PURPOSE: The PTW microDiamond has an enhanced spatial resolution when operated in an edge-on orientation but is not typically utilized in this orientation due to the specifications of the IAEA TRS-483 code of practice for small field dosimetry. In this work the suitability of an edge-on orientation and advantages over the recommended face-on orientation will be presented. METHODS: The PTW microDiamond in both orientations was compared on a Varian TrueBeam linac for: machine output factor (OF), percentage depth dose (PDD), and beam profile measurements from 10 × 10 cm2 to a 0.5 × 0.5 cm2 field size for 6X and 6FFF beam energies in a water tank. A quantification of the stem effect was performed in edge-on orientation along with tissue to phantom ratio (TPR) measurements. An extensive angular dependence study for the two orientations was also undertaken within two custom PMMA plastic cylindrical phantoms. RESULTS: The OF of the PTW microDiamond in both orientations agrees within 1% down to the 2 × 2 cm2 field size. The edge-on orientation overresponds in the build-up region but provides improved penumbra and has a maximum observed stem effect of 1%. In the edge-on orientation there is an angular independent response with a maximum of 2% variation down to a 2 × 2 cm2 field. The PTW microDiamond in edge-on orientation for TPR measurements agreed to the CC01 ionization chamber within 1% for all field sizes. CONCLUSIONS: The microDiamond was shown to be suitable for small field dosimetry when operated in edge-on orientation. When edge-on, a significantly reduced angular dependence is observed with no significant stem effect, making it a more versatile QA instrument for rotational delivery techniques.


Asunto(s)
Aceleradores de Partículas , Radiometría , Humanos , Fantasmas de Imagen , Fotones , Agua
19.
J Appl Clin Med Phys ; 21(6): 44-52, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32277745

RESUMEN

PURPOSE: This study investigated the use of high spatial resolution solid-state detectors (DUO and Octa) combined with an inclinometer for machine-based quality assurance (QA) of Volumetric Modulated Arc Therapy (VMAT) with flattened and flattening filter-free beams. METHOD: The proposed system was inserted in the accessory tray of the gantry head of a Varian 21iX Clinac and a Truebeam linear accelerator. Mutual dependence of the dose rate (DR) and gantry speed (GS) was assessed using the standard Varian customer acceptance plan (CAP). The multi-leaf collimator (MLC) leaf speed was evaluated under static gantry conditions in directions parallel and orthogonal to gravity as well as under dynamic gantry conditions. Measurements were compared to machine log files. RESULTS: DR and GS as a function of gantry angle were reconstructed using the DUO/inclinometer and in agreement to within 1% with the machine log files in the sectors of constant DR and GS. The MLC leaf speeds agreed with the nominal speeds and those extracted from the machine log files to within 0.03 cm s-1 . The effect of gravity on the leaf motion was only observed when the leaves traveled faster than the nominal maximum velocity stated by the vendor. Under dynamic gantry conditions, MLC leaf speeds ranging between 0.33 and 1.42 cm s-1 were evaluated. Comparing the average MLC leaf speeds with the machine log files found differences between 0.9% and 5.7%, with the largest discrepancy occurring under conditions of fastest leaf velocity, lowest DR and lowest detector signal. CONCLUSIONS: The investigation on the use of solid-state detectors in combination with an inclinometer has demonstrated the capability to provide efficient and independent verification of DR, GS, and MLC leaf speed during dynamic VMAT delivery. Good agreement with machine log files suggests the detector/inclinometer system is a useful tool for machine-specific VMAT QA.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Aceleradores de Partículas , Dosificación Radioterapéutica
20.
Med Phys ; 47(6): 2461-2471, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32133649

RESUMEN

PURPOSE: Preclinical radiotherapy applications require dedicated irradiation systems which are expensive and not widely available. In this work, a clinical dual source 137 Cs cell irradiator was adapted to deliver 1-cm diameter preclinical treatment beams using a lead and stainless steel custom-made collimator to treat one or two mice at a time. METHODS: The dosimetric characteristics of all the different components of the system (including collimator, phantoms, and radiation sources) have been simulated with EGSnrc Monte Carlo methods. The collimator was constructed based on these simulations and the calculated results were verified against dosimetric measurements with MOSKin detectors, GAFchromic films, and dosimetric gels. RESULTS: The comparisons showed an agreement, in terms of full width half maximum values, between the simulated and the measured dose cross profiles at the midline within 4% for both gel dosimetry and GAFchromic films. Out of beam dose, measured in air at the collimator midplane with MOSFET detectors was between 6% and 10% of the beam axis dose. The dimensions of the beam are constant along the vertical axis of the collimator and also the simulated and measured Percentage Depth Dose (PDD) curves show an agreement within 1%. CONCLUSIONS: The collimator design developed in this work allows the creation of a beam with the necessary characteristics for ablative radiotherapy treatments on small animals using a standard clinical cell irradiator. This collimator design will make advanced preclinical studies with ablative beams possible for all those institutions which do not have collimated preclinical irradiators available.


Asunto(s)
Radiometría , Planificación de la Radioterapia Asistida por Computador , Animales , Ratones , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...