Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Cell Signal ; 109: 110763, 2023 09.
Article En | MEDLINE | ID: mdl-37315752

Reelin and its receptor, ApoER2, play important roles in prenatal brain development and postnatally in synaptic plasticity, learning, and memory. Previous reports suggest that reelin's central fragment binds to ApoER2 and receptor clustering is involved in subsequent intracellular signaling. However, limitations of currently available assays have not established cellular evidence of ApoER2 clustering upon binding of the central reelin fragment. In the present study, we developed a novel, cell-based assay of ApoER2 dimerization using a "split-luciferase" approach. Specifically, cells were co-transfected with one recombinant ApoER2 receptor fused to the N-terminus of luciferase and one ApoER2 receptor fused to the C-terminus of luciferase. Using this assay, we directly observed basal ApoER2 dimerization/clustering in transfected HEK293T cells and, significantly, an increase in ApoER2 clustering in response to that central fragment of reelin. Furthermore, the central fragment of reelin activated intracellular signal transduction of ApoER2, indicated by increased levels of phosphorylation of Dab1, ERK1/2, and Akt in primary cortical neurons. Functionally, we were able to demonstrate that injection of the central fragment of reelin rescued phenotypic deficits observed in the heterozygous reeler mouse. These data are the first to test the hypothesis that the central fragment of reelin contributes to facilitating the reelin intracellular signaling pathway through receptor clustering.


Extracellular Matrix Proteins , Serine Endopeptidases , Mice , Animals , Humans , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Extracellular Matrix Proteins/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , HEK293 Cells , Nerve Tissue Proteins/metabolism , Signal Transduction/physiology , Disease Models, Animal , Luciferases/metabolism , Cognition , Receptors, LDL/metabolism
2.
Neurotherapeutics ; 19(4): 1329-1339, 2022 07.
Article En | MEDLINE | ID: mdl-35534672

The rare genetic neurodevelopmental disease Angelman syndrome (AS) is caused by the loss of function of UBE3A, a ubiquitin ligase. The disease results in a lifetime of severe symptoms, including intellectual disability and motor impairments for which there are no effective treatments. One avenue of treatment for AS is the use of gene therapy to reintroduce a functional copy of the UBE3A gene. Our group had previously shown that recombinant adeno-associated virus (rAAV) expressing mouse Ube3a could rescue deficits in a mouse model of AS. Here, we expand on this work and show that this approach could be successfully replicated in a second AS model using the human UBE3A gene. Furthermore, we address the challenge of limited vector distribution in the brain by developing a novel modified form of UBE3A. This modified protein, termed STUB, was designed with a secretion signal and a cell-penetrating peptide. This allowed transduced cells to act as factories for the production of UBE3A protein that could be taken up by neighboring non-transduced cells, thus increasing the number of neurons receiving the therapeutic protein. Combining this construct with intracerebroventricular injections to maximize rAAV distribution within the brain, we demonstrate that this novel approach improves the recovery of behavioral and electrophysiological deficits in the AS rat model. More importantly, a comparison of rAAV-STUB to a rAAV expressing the normal human UBE3A gene showed that STUB was a more effective therapeutic. These data suggest that rAAV-STUB is a new potential approach for the treatment of AS.


Angelman Syndrome , Cell-Penetrating Peptides , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Rats , Angelman Syndrome/genetics , Angelman Syndrome/therapy , Cell-Penetrating Peptides/genetics , Genetic Therapy , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/genetics
3.
Geroscience ; 44(1): 173-194, 2022 02.
Article En | MEDLINE | ID: mdl-34410588

C-terminal cleaved tau at D421 (∆D421-tau) accumulates in the brains of Alzheimer's disease (AD) patients. However, it is unclear how tau truncation, an understudied tau post-translational modification, contributes to AD pathology and progression. Utilizing an adeno-associated virus (AAV) gene delivery-based approach, we overexpressed full-length tau (FL-tau) and ∆D421-tau in 4- and 12-month-old mice for 4 months to study the neuropathological impact of accumulation in young adult (8-month) and middle-aged (16-month) mice. Overall, we show that independent of the tau species, age was an important factor facilitating tau phosphorylation, oligomer formation, and deposition into silver-positive tangles. However, mice overexpressing ∆D421-tau exhibited a distinct phosphorylation profile to those overexpressing FL-tau and increased tau oligomerization in the middle-age group. Importantly, overexpression of ∆D421-tau, but not FL-tau in middle-aged mice, resulted in pronounced cognitive impairments and hippocampal long-term potentiation deficits. While both FL-tau and ∆D421-tau induced neuronal loss in mice with age, ∆D421-tau led to significant neuronal loss in the CA3 area of the hippocampus and medial entorhinal cortex compared to FL-tau. Based on our data, we conclude that age increases the susceptibility to neuronal degeneration associated with ΔD421-tau accumulation. Our findings suggest that ΔD421-tau accumulation contributes to synaptic plasticity and cognitive deficits, thus representing a potential target for tau-associated pathologies.


Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/genetics , Animals , Cognition , Cognitive Dysfunction/pathology , Humans , Mice , Mice, Inbred C57BL , Neuronal Plasticity
4.
J Neuroinflammation ; 17(1): 157, 2020 May 14.
Article En | MEDLINE | ID: mdl-32410624

BACKGROUND: Fractalkine (CX3CL1; FKN) is a chemokine expressed by neurons that mediates communication between neurons and microglia. By regulating microglial activity, CX3CL1 can mitigate the damaging effects of chronic microglial inflammation within the brain, a state that plays a major role in aging and neurodegeneration. CX3CL1 is present in two forms, a full-length membrane-bound form and a soluble cleaved form (sFKN), generated by a disintegrin and metalloproteinase (ADAM) 10 or 17. Levels of sFKN decrease with aging, which could lead to enhanced inflammation, deficits in synaptic remodeling, and subsequent declines in cognition. Recently, the idea that these two forms of CX3CL1 may display differential activities within the CNS has garnered increased attention, but remains unresolved. METHODS: Here, we assessed the consequences of CX3CL1 knockout (CX3CL1-/-) on cognitive behavior as well as the functional rescue with the two different forms of CX3CL1 in mice. CX3CL1-/- mice were treated with adeno-associated virus (AAV) expressing either green fluorescent protein (GFP), sFKN, or an obligate membrane-bound form of CX3CL1 (mFKN) and then subjected to behavioral testing to assess cognition and motor function. Following behavioral analysis, brains were collected and analyzed for markers of neurogenesis, or prepared for electrophysiology to measure long-term potentiation (LTP) in hippocampal slices. RESULTS: CX3CL1-/- mice showed significant deficits in cognitive tasks for long-term memory and spatial learning and memory in addition to demonstrating enhanced basal motor performance. These alterations correlated with deficits in both hippocampal neurogenesis and LTP. Treatment of CX3CL1-/- mice with AAV-sFKN partially corrected changes in both cognitive and motor function and restored neurogenesis and LTP to levels similar to wild-type animals. Treatment with AAV-mFKN partially restored spatial learning and memory in CX3CL1-/- mice, but did not rescue long-term memory, or neurogenesis. CONCLUSIONS: These results are the first to demonstrate that CX3CL1 knockout causes significant cognitive deficits that can be rescued by treatment with sFKN and only partially rescued with mFKN. This suggests that treatments that restore signaling of soluble forms of CX3CL1 may be a viable therapeutic option for aging and disease.


Brain/metabolism , Chemokine CX3CL1/metabolism , Cognitive Dysfunction/metabolism , Animals , Mice , Mice, Knockout , Neurogenesis/physiology , Protein Isoforms
5.
Autism Res ; 13(3): 397-409, 2020 03.
Article En | MEDLINE | ID: mdl-31961493

Angelman syndrome (AS) is a rare genetic disorder characterized by severe intellectual disability, seizures, lack of speech, and ataxia. The gene responsible for AS was identified as Ube3a and it encodes for E6AP, an E3 ubiquitin ligase. Currently, there is very little known about E6AP's mechanism of action in vivo or how the lack of this protein in neurons may contribute to the AS phenotype. Elucidating the mechanistic action of E6AP would enhance our understanding of AS and drive current research into new avenues that could lead to novel therapeutic approaches that target E6AP's various functions. To facilitate the study of AS, we have generated a novel rat model in which we deleted the rat Ube3a gene using CRISPR. The AS rat phenotypically mirrors human AS with loss of Ube3a expression in the brain and deficits in motor coordination as well as learning and memory. This model offers a new avenue for the study of AS. Autism Res 2020, 13: 397-409. © 2020 International Society for Autism Research,Wiley Periodicals, Inc. LAY SUMMARY: Angelman syndrome (AS) is a rare genetic disorder characterized by severe intellectual disability, seizures, difficulty speaking, and ataxia. The gene responsible for AS was identified as UBE3A, yet very little is known about its function in vivo or how the lack of this protein in neurons may contribute to the AS phenotype. To facilitate the study of AS, we have generated a novel rat model in which we deleted the rat Ube3a gene using CRISPR. The AS rat mirrors human AS with loss of Ube3a expression in the brain and deficits in motor coordination as well as learning and memory. This model offers a new avenue for the study of AS.


Angelman Syndrome/genetics , Angelman Syndrome/physiopathology , Gene Deletion , Ubiquitin-Protein Ligases/genetics , Animals , Brain/physiopathology , Disease Models, Animal , Humans , Memory , Phenotype , Rats , Rats, Sprague-Dawley
6.
Mol Cell Neurosci ; 102: 103418, 2020 01.
Article En | MEDLINE | ID: mdl-31705957

AIMS: The current study utilizes the adeno-associated viral gene transfer system in the CAMKIIα-tTA mouse model to overexpress human wild type TDP-43 (wtTDP-43) and α-synuclein (α-Syn) proteins. The co-existence of these proteins is evident in the pathology of neurodegenerative disorders such as frontotemporal lobar degeneration (FTLD), Parkinson disease (PD), and dementia with Lewy bodies (DLB). METHODS: The novel bicistronic recombinant adeno-associated virus (rAAV) serotype 9 drives wtTDP-43 and α-Syn expression in the hippocampus via "TetO" CMV promoter. Behavior, electrophysiology, and biochemical and histological assays were used to validate neuropathology. RESULTS: We report that overexpression of wtTDP-43 but not α-Syn contributes to hippocampal CA2-specific pyramidal neuronal loss and overall hippocampal atrophy. Further, we report a reduction of hippocampal long-term potentiation and decline in learning and memory performance of wtTDP-43 expressing mice. Elevated wtTDP-43 levels induced selective degeneration of Purkinje cell protein 4 (PCP-4) positive neurons while both wtTDP-43 and α-Syn expression reduced subsets of the glutamate receptor expression in the hippocampus. CONCLUSIONS: Overall, our findings suggest the significant vulnerability of hippocampal neurons toward elevated wtTDP-43 levels possibly via PCP-4 and GluR-dependent calcium signaling pathways. Further, we report that wtTDP-43 expression induced selective CA2 subfield degeneration, contributing to the deterioration of the hippocampal-dependent cognitive phenotype.


CA2 Region, Hippocampal/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , DNA-Binding Proteins/metabolism , Long-Term Potentiation , Memory , Animals , CA2 Region, Hippocampal/physiology , DNA-Binding Proteins/genetics , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Maze Learning , Mice , Neuropeptides/genetics , Neuropeptides/metabolism , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , alpha-Synuclein/metabolism
7.
Geroscience ; 41(1): 77-87, 2019 02.
Article En | MEDLINE | ID: mdl-30739297

The incidence of neurodegenerative disorders and cognitive impairment is increasing. Rising prevalence of age-related medical conditions is associated with a dramatic economic burden; therefore, developing strategies to manage these health concerns is of great public health interest. Nutritionally based interventions have shown promise in treatment of these age-associated conditions. Astaxanthin is a carotenoid with reputed neuroprotective properties in the context of disease and injury, while emerging evidence suggests that astaxanthin may also have additional biological activities relating to neurogenesis and synaptic plasticity. Here, we investigate the potential for astaxanthin to modulate cognitive function and neural plasticity in young and aged mice. We show that feeding astaxanthin to aged mice for 1 month improves performance on several hippocampal-dependent cognitive tasks and increases long-term potentiation. However, we did not observe an alteration in neurogenesis, nor did we observe a change in microglial-associated IBA1 immunostaining. This demonstrates the potential for astaxanthin to modulate neural plasticity and cognitive function in aging.


Aging/drug effects , Cognition/drug effects , Dietary Supplements , Neuronal Plasticity/drug effects , Neuroprotective Agents/pharmacology , Aging/pathology , Animals , Behavior, Animal/drug effects , Cognitive Dysfunction/diet therapy , Hippocampus/drug effects , Hippocampus/physiology , Inflammation/diet therapy , Long-Term Potentiation/drug effects , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/physiology , Neurodegenerative Diseases/diet therapy , Neurogenesis/drug effects , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Xanthophylls/administration & dosage , Xanthophylls/pharmacology , Xanthophylls/therapeutic use
8.
Biodivers Data J ; (5): e21139, 2017.
Article En | MEDLINE | ID: mdl-29200929

Natural history collections contain data that are critical for many scientific endeavors. Recent efforts in mass digitization are generating large datasets from these collections that can provide unprecedented insight. Here, we present examples of how deep convolutional neural networks can be applied in analyses of imaged herbarium specimens. We first demonstrate that a convolutional neural network can detect mercury-stained specimens across a collection with 90% accuracy. We then show that such a network can correctly distinguish two morphologically similar plant families 96% of the time. Discarding the most challenging specimen images increases accuracy to 94% and 99%, respectively. These results highlight the importance of mass digitization and deep learning approaches and reveal how they can together deliver powerful new investigative tools.

10.
Eur J Neurosci ; 41(10): 1372-80, 2015 May.
Article En | MEDLINE | ID: mdl-25864922

The Reelin signaling pathway is implicated in processes controlling synaptic plasticity and hippocampus-dependent learning and memory. A single direct in vivo application of Reelin enhances long-term potentiation, increases dendritic spine density and improves associative and spatial learning and memory. Angelman syndrome (AS) is a neurological disorder that presents with an overall defect in synaptic function, including decreased long-term potentiation, reduced dendritic spine density, and deficits in learning and memory, making it an attractive model in which to examine the ability of Reelin to recover synaptic function and cognitive deficits. In this study, we investigated the effects of Reelin administration on synaptic plasticity and cognitive function in a mouse model of AS and demonstrated that bilateral, intraventricular injections of Reelin recover synaptic function and corresponding hippocampus-dependent associative and spatial learning and memory. Additionally, we describe alteration of the Reelin profile in tissue from both the AS mouse and post-mortem human brain.


Angelman Syndrome/physiopathology , Angelman Syndrome/psychology , Cell Adhesion Molecules, Neuronal/administration & dosage , Extracellular Matrix Proteins/administration & dosage , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Nerve Tissue Proteins/administration & dosage , Serine Endopeptidases/administration & dosage , Angelman Syndrome/drug therapy , Animals , Cell Adhesion Molecules, Neuronal/metabolism , Cerebral Cortex/metabolism , Dendritic Spines/drug effects , Disease Models, Animal , Extracellular Matrix Proteins/metabolism , Female , HEK293 Cells , Hippocampus/physiopathology , Hippocampus/ultrastructure , Humans , Injections, Intraventricular , Male , Mice , Motor Activity/drug effects , Nerve Tissue Proteins/metabolism , Reelin Protein , Serine Endopeptidases/metabolism , Spatial Learning/drug effects , Spatial Memory/drug effects
11.
J Psychopharmacol ; 27(4): 386-95, 2013 Apr.
Article En | MEDLINE | ID: mdl-23104248

The lipoprotein receptor ligand Reelin is important for the processes of normal synaptic plasticity, dendritic morphogenesis, and learning and memory. Heterozygous reeler mice (HRM) show many neuroanatomical, biochemical, and behavioral features that are associated with schizophrenia. HRM show subtle morphological defects including reductions in dendritic spine density, altered synaptic plasticity and behavioral deficits in associative learning and memory and pre-pulse inhibition. The present studies test the hypothesis that in vivo elevation of Reelin levels can rescue synaptic and behavioral phenotypes associated with HRM. We demonstrate that a single in vivo injection of Reelin increases GAD67 expression and alters dendritic spine morphology. In parallel we observed enhancement of hippocampal synaptic function and associative learning and memory. Reelin supplementation also increases pre-pulse inhibition. These results suggest that characteristics of HRM, similar to those observed in schizophrenia, are sensitive to Reelin levels and can be modified with Reelin supplementation in male and female adults.


Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Gait Disorders, Neurologic/metabolism , Learning Disabilities/metabolism , Nerve Tissue Proteins/metabolism , Neuronal Plasticity , Schizophrenia/metabolism , Serine Endopeptidases/metabolism , Animals , Cell Adhesion Molecules, Neuronal/genetics , Crosses, Genetic , Dendritic Spines/metabolism , Dendritic Spines/pathology , Extracellular Matrix Proteins/genetics , Female , Gait Disorders, Neurologic/etiology , Glutamate Decarboxylase/metabolism , Heterozygote , Hippocampus/metabolism , Learning , Learning Disabilities/etiology , Male , Mice , Mice, Neurologic Mutants , Nerve Tissue Proteins/genetics , Neural Inhibition , Neurons/metabolism , Reelin Protein , Schizophrenia/pathology , Schizophrenia/physiopathology , Sensory Gating , Serine Endopeptidases/genetics , Synaptic Transmission
12.
PLoS One ; 6(12): e27221, 2011.
Article En | MEDLINE | ID: mdl-22174738

Angelman syndrome (AS), a genetic disorder occurring in approximately one in every 15,000 births, is characterized by severe mental retardation, seizures, difficulty speaking and ataxia. The gene responsible for AS was discovered to be UBE3A and encodes for E6-AP, an ubiquitin ligase. A unique feature of this gene is that it undergoes maternal imprinting in a neuron-specific manner. In the majority of AS cases, there is a mutation or deletion in the maternally inherited UBE3A gene, although other cases are the result of uniparental disomy or mismethylation of the maternal gene. While most human disorders characterized by severe mental retardation involve abnormalities in brain structure, no gross anatomical changes are associated with AS. However, we have determined that abnormal calcium/calmodulin-dependent protein kinase II (CaMKII) regulation is seen in the maternal UBE3A deletion AS mouse model and is responsible for the major phenotypes. Specifically, there is an increased αCaMKII phosphorylation at the autophosphorylation sites Thr(286) and Thr(305/306), resulting in an overall decrease in CaMKII activity. CaMKII is not produced until after birth, indicating that the deficits associated with AS are not the result of developmental abnormalities. The present studies are focused on exploring the potential to rescue the learning and memory deficits in the adult AS mouse model through the use of an adeno-associated virus (AAV) vector to increase neuronal UBE3A expression. These studies show that increasing the levels of E6-AP in the brain using an exogenous vector can improve the cognitive deficits associated with AS. Specifically, the associative learning deficit was ameliorated in the treated AS mice compared to the control AS mice, indicating that therapeutic intervention may be possible in older AS patients.


Angelman Syndrome/complications , Cognition Disorders/complications , Dependovirus/metabolism , Angelman Syndrome/physiopathology , Animals , Anxiety/physiopathology , Association Learning/physiology , Cognition Disorders/physiopathology , Disease Models, Animal , HEK293 Cells , Humans , Long-Term Potentiation , Maze Learning/physiology , Mice , Motor Activity/physiology , Ubiquitin-Protein Ligases/metabolism
13.
J Neurosci ; 31(45): 16241-50, 2011 Nov 09.
Article En | MEDLINE | ID: mdl-22072675

The protective/neurotoxic role of fractalkine (CX3CL1) and its receptor CX3C chemokine receptor 1 (CX3CR1) signaling in neurodegenerative disease is an intricate and highly debated research topic and it is becoming even more complicated as new studies reveal discordant results. It appears that the CX3CL1/CX3CR1 axis plays a direct role in neurodegeneration and/or neuroprotection depending on the CNS insult. However, all the above studies focused on the role of CX3CL1/CX3CR1 signaling in pathological conditions, ignoring the relevance of CX3CL1/CX3CR1 signaling under physiological conditions. No approach to date has been taken to decipher the significance of defects in CX3CL1/CX3CR1 signaling in physiological condition. In the present study we used CX3CR1⁻/⁻, CX3CR1⁺/⁻, and wild-type mice to investigate the physiological role of CX3CR1 receptor in cognition and synaptic plasticity. Our results demonstrate for the first time that mice lacking the CX3CR1 receptor show contextual fear conditioning and Morris water maze deficits. CX3CR1 deficiency also affects motor learning. Importantly, mice lacking the receptor have a significant impairment in long-term potentiation (LTP). Infusion with IL-1ß receptor antagonist significantly reversed the deficit in cognitive function and impairment in LTP. Our results reveal that under physiological conditions, disruption in CX3CL1 signaling will lead to impairment in cognitive function and synaptic plasticity via increased action of IL-1ß.


Cognition Disorders/pathology , Hippocampus/pathology , Hippocampus/physiopathology , Long-Term Potentiation/genetics , Receptors, Interleukin-8A/deficiency , Analysis of Variance , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Biophysics , Bromodeoxyuridine/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cerebellum/metabolism , Cognition Disorders/genetics , Conditioning, Psychological/physiology , Cytokines/metabolism , Disease Models, Animal , Electric Stimulation , Enzyme-Linked Immunosorbent Assay/methods , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Exploratory Behavior/physiology , Fear/physiology , Gene Expression Regulation/genetics , In Vitro Techniques , Interleukin 1 Receptor Antagonist Protein/pharmacology , Long-Term Potentiation/physiology , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Microglia/pathology , Motor Activity/genetics , Neurogenesis/genetics , Patch-Clamp Techniques , Rotarod Performance Test
14.
PLoS One ; 6(9): e24840, 2011.
Article En | MEDLINE | ID: mdl-21935478

The gene FKBP5 codes for FKBP51, a co-chaperone protein of the Hsp90 complex that increases with age. Through its association with Hsp90, FKBP51 regulates the glucocorticoid receptor (GR). Single nucleotide polymorphisms (SNPs) in the FKBP5 gene associate with increased recurrence of depressive episodes, increased susceptibility to post-traumatic stress disorder, bipolar disorder, attempt of suicide, and major depressive disorder in HIV patients. Variation in one of these SNPs correlates with increased levels of FKBP51. FKBP51 is also increased in HIV patients. Moreover, increases in FKBP51 in the amygdala produce an anxiety phenotype in mice. Therefore, we tested the behavioral consequences of FKBP5 deletion in aged mice. Similar to that of naïve animals treated with classical antidepressants FKBP5-/- mice showed antidepressant behavior without affecting cognition and other basic motor functions. Reduced corticosterone levels following stress accompanied these observed effects on depression. Age-dependent anxiety was also modulated by FKBP5 deletion. Therefore, drug discovery efforts focused on depleting FKBP51 levels may yield novel antidepressant therapies.


Depressive Disorder/metabolism , Tacrolimus Binding Proteins/metabolism , Aged, 80 and over , Animals , Blotting, Western , Corticosterone/blood , Depressive Disorder/genetics , Depressive Disorder/therapy , Humans , Immunohistochemistry , Maze Learning/physiology , Mice , Mice, Knockout , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Tacrolimus Binding Proteins/genetics
15.
Learn Mem ; 18(9): 558-64, 2011 Sep.
Article En | MEDLINE | ID: mdl-21852430

Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive function; however, the in vivo effect of enhanced Reelin signaling on cognitive function and synaptic plasticity in wild-type mice is unknown. The present studies test the hypothesis that in vivo enhancement of Reelin signaling can alter synaptic plasticity and ultimately influence processes of learning and memory. Purified recombinant Reelin was injected bilaterally into the ventricles of wild-type mice. We demonstrate that a single in vivo injection of Reelin increased activation of adaptor protein Disabled-1 and cAMP-response element binding protein after 15 min. These changes correlated with increased dendritic spine density, increased hippocampal CA1 long-term potentiation (LTP), and enhanced performance in associative and spatial learning and memory. The present study suggests that an acute elevation of in vivo Reelin can have long-term effects on synaptic function and cognitive ability in wild-type mice.


Brain/cytology , Cell Adhesion Molecules, Neuronal/pharmacology , Cognition/drug effects , Dendritic Spines/drug effects , Extracellular Matrix Proteins/pharmacology , Nerve Tissue Proteins/pharmacology , Neuronal Plasticity/drug effects , Neurons/ultrastructure , Serine Endopeptidases/pharmacology , Action Potentials/drug effects , Animals , CREB-Binding Protein/metabolism , Conditioning, Psychological/drug effects , Dendritic Spines/ultrastructure , Excitatory Postsynaptic Potentials/drug effects , Exploratory Behavior/drug effects , Fear/drug effects , Fear/psychology , HEK293 Cells/cytology , Humans , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Reelin Protein , Silver Staining/methods
16.
J Neurosci ; 30(50): 17068-78, 2010 Dec 15.
Article En | MEDLINE | ID: mdl-21159977

The vast majority of Alzheimer's disease (AD) cases are late onset with progressive synapse loss and neurodegeneration. Although the amyloid hypothesis has generated great insights into the disease mechanism, several lines of evidence indicate that other risk factors might precondition the brain to amyloid toxicity. Here, we show that the deletion of a major lipoprotein receptor, low-density lipoprotein receptor-related protein 1 (LRP1), in forebrain neurons in mice leads to a global defect in brain lipid metabolism characterized by decreased brain levels of cholesterol, sulfatide, galactosylceramide, and triglyceride. These lipid deficits correlate with progressive, age-dependent dendritic spine degeneration, synapse loss, neuroinflammation, memory loss, and eventual neurodegeneration. We further show that the levels of glutamate receptor subunits NMDA receptor 1 and Glu receptor 1 are selectively reduced in LRP1 forebrain knock-out mice and in LRP1 knockdown neurons, which is partially rescued by restoring neuronal cholesterol. Together, these studies support a critical role for LRP1 in maintaining brain lipid homeostasis and associated synaptic and neuronal integrity, and provide important insights into the pathophysiological mechanisms in AD.


Lipid Metabolism/genetics , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Nerve Degeneration/metabolism , Neurons/pathology , Prosencephalon/metabolism , Synapses/pathology , Age Factors , Amnesia/pathology , Animals , Cell Culture Techniques , Dendritic Spines/pathology , Hippocampus/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Mice , Mice, Knockout , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Neurons/metabolism , Prosencephalon/pathology , Receptors, AMPA/biosynthesis , Receptors, N-Methyl-D-Aspartate/biosynthesis , Synapses/metabolism
17.
Mol Neurodegener ; 5: 45, 2010 Nov 01.
Article En | MEDLINE | ID: mdl-21040568

BACKGROUND: It has traditionally been thought that the pathological accumulation of tau in Alzheimer's disease and other tauopathies facilitates neurodegeneration, which in turn leads to cognitive impairment. However, recent evidence suggests that tau tangles are not the entity responsible for memory loss, rather it is an intermediate tau species that disrupts neuronal function. Thus, efforts to discover therapeutics for tauopathies emphasize soluble tau reductions as well as neuroprotection. RESULTS: Here, we found that neuroprotection alone caused by methylene blue (MB), the parent compound of the anti-tau phenothiaziazine drug, Rember™, was insufficient to rescue cognition in a mouse model of the human tauopathy, progressive supranuclear palsy (PSP) and fronto-temporal dementia with parkinsonism linked to chromosome 17 (FTDP17): Only when levels of soluble tau protein were concomitantly reduced by a very high concentration of MB, was cognitive improvement observed. Thus, neurodegeneration can be decoupled from tau accumulation, but phenotypic improvement is only possible when soluble tau levels are also reduced. CONCLUSIONS: Neuroprotection alone is not sufficient to rescue tau-induced memory loss in a transgenic mouse model. Development of neuroprotective agents is an area of intense investigation in the tauopathy drug discovery field. This may ultimately be an unsuccessful approach if soluble toxic tau intermediates are not also reduced. Thus, MB and related compounds, despite their pleiotropic nature, may be the proverbial "magic bullet" because they not only are neuroprotective, but are also able to facilitate soluble tau clearance. Moreover, this shows that neuroprotection is possible without reducing tau levels. This indicates that there is a definitive molecular link between tau and cell death cascades that can be disrupted.

18.
Biol Psychiatry ; 68(2): 197-204, 2010 Jul 15.
Article En | MEDLINE | ID: mdl-20385375

BACKGROUND: The limbic system-associated membrane protein (LAMP) promotes development of neurons of limbic origin. We have previously shown that genetic deletion of LAMP results in heightened reactivity to novelty and reduced anxiety-like behaviors in mice. Here, we demonstrate a critical role of LAMP in hippocampal-dependent synaptic physiology and behavior. METHODS: We tested spatial memory performance, hippocampal synaptic plasticity, and stress-related modalities in Lsamp(-/-) mice and their littermate control mice. RESULTS: Lsamp(-/-) mice exhibit a pronounced deficit in spatial memory acquisition and poorly sustained CA1 long-term potentiation. We found reduced expression of mineralocorticoid receptor (MR) transcripts in the hippocampus and reduction in the corticosterone-induced, MR-mediated nongenomic modulatory effects on CA1 synaptic transmission. Importantly, the impaired long-term potentiation in Lsamp(-/-) mice can be rescued by stress-like levels of corticosterone in a MR-dependent manner. CONCLUSIONS: Our study reveals a novel functional relationship between a cell adhesion molecule enriched in developing limbic circuits, glucocorticoid receptors, and cognitive functioning.


Cell Adhesion Molecules, Neuronal/genetics , Hippocampus/metabolism , Long-Term Potentiation/genetics , Maze Learning/physiology , Receptors, Mineralocorticoid/metabolism , Analysis of Variance , Animals , Behavior, Animal/physiology , Blotting, Western , Corticosterone/pharmacology , Electrophysiology , GPI-Linked Proteins , Hippocampus/drug effects , Immunohistochemistry , In Situ Hybridization , Long-Term Potentiation/drug effects , Mental Recall/physiology , Mice , Mice, Knockout , Neurons/metabolism , Receptors, Mineralocorticoid/genetics , Spatial Behavior/physiology , Synapses/genetics , Synapses/metabolism
19.
Learn Mem ; 15(6): 403-11, 2008 Jun.
Article En | MEDLINE | ID: mdl-18509114

cAMP is a critical second messenger implicated in synaptic plasticity and memory in the mammalian brain. Substantial evidence links increases in intracellular cAMP to activation of cAMP-dependent protein kinase (PKA) and subsequent phosphorylation of downstream effectors (transcription factors, receptors, protein kinases) necessary for long-term potentiation (LTP) of synaptic strength. However, cAMP may also initiate signaling via a guanine nucleotide exchange protein directly activated by cAMP (Epac). The role of Epac in hippocampal synaptic plasticity is unknown. We found that in area CA1 of mouse hippocampal slices, activation of Epac enhances maintenance of LTP without affecting basal synaptic transmission. The persistence of this form of LTP requires extracellular signal-regulated protein kinase (ERK) and new protein synthesis, but not transcription. Because ERK is involved in translational control of long-lasting plasticity and memory, our data suggest that Epac is a crucial link between cAMP and ERK during some forms of protein synthesis-dependent LTP. Activation of Epac represents a novel signaling pathway for rapid regulation of the stability of enduring forms of LTP and, perhaps, of hippocampus- dependent long-term memories.


Guanine Nucleotide Exchange Factors/physiology , Hippocampus/physiology , Long-Term Potentiation/physiology , Animals , Butadienes/pharmacology , Carbazoles/pharmacology , Cyclic AMP/analogs & derivatives , Cyclic AMP/pharmacology , Cyclic AMP/physiology , Dactinomycin/pharmacology , Emetine/pharmacology , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/physiology , Female , Guanine Nucleotide Exchange Factors/agonists , Isoproterenol/pharmacology , Mice , Mice, Inbred C57BL , Nitriles/pharmacology , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational/drug effects , Pyrroles/pharmacology , Synaptic Transmission/drug effects , Transcription, Genetic/drug effects
20.
Mol Neurodegener ; 1: 12, 2006 Sep 19.
Article En | MEDLINE | ID: mdl-16984644

Selenium is an essential micronutrient that function through selenoproteins. Selenium deficiency results in lower concentrations of selenium and selenoproteins. The brain maintains it's selenium better than other tissues under low-selenium conditions. Recently, the selenium-containing protein selenoprotein P (Sepp) has been identified as a possible transporter of selenium. The targeted disruption of the selenoprotein P gene (Sepp1) results in decreased brain selenium concentration and neurological dysfunction, unless selenium intake is excessive However, the effect of selenoprotein P deficiency on the processes of memory formation and synaptic plasticity is unknown. In the present studies Sepp1(-/-) mice and wild type littermate controls (Sepp1(+/+)) fed a high-selenium diet (1 mg Se/kg) were used to characterize activity, motor coordination, and anxiety as well as hippocampus-dependent learning and memory. Normal associative learning, but disrupted spatial learning was observed in Sepp1(-/-) mice. In addition, severe alterations were observed in synaptic transmission, short-term plasticity and long-term potentiation in hippocampus area CA1 synapses of Sepp1(-/-) mice on a 1 mg Se/kg diet and Sepp1(+/+) mice fed a selenium-deficient (0 mg Se/kg) diet. Taken together, these data suggest that selenoprotein P is required for normal synaptic function, either through presence of the protein or delivery of required selenium to the CNS.

...