Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutr Healthy Aging ; 5(4): 239-246, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33344796

RESUMEN

 As the global population ages, there is increased interest in living longer and improving one's quality of life in later years. However, studying aging - the decline in body function - is expensive and time-consuming. And despite research success to make model organisms live longer, there still aren't really any feasible solutions for delaying aging in humans. With space travel, scientists and engineers couldn't know what it would take to get to the moon. They had to extrapolate from theory and shorter-range tests. Perhaps with aging, we need a similar moonshot philosophy. And though "shot" might imply medicine, perhaps we need to think beyond medical interventions. Like the moon once was, we seem a long way away from provable therapies to increase human healthspan (the healthy period of one's life) or lifespan (how long one lives). This review therefore focuses on radical proposals. We hope it might stimulate discussion on what we might consider doing significantly differently than ongoing aging research.

2.
Sci Transl Med ; 12(544)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32434850

RESUMEN

Nitrogen-containing bisphosphonates (N-BPs), such as alendronate, are the most widely prescribed medications for diseases involving bone, with nearly 200 million prescriptions written annually. Recently, widespread use of N-BPs has been challenged due to the risk of rare but traumatic side effects such as atypical femoral fracture (AFF) and osteonecrosis of the jaw (ONJ). N-BPs bind to and inhibit farnesyl diphosphate synthase, resulting in defects in protein prenylation. Yet, it remains poorly understood what other cellular factors might allow N-BPs to exert their pharmacological effects. Here, we performed genome-wide studies in cells and patients to identify the poorly characterized gene, ATRAID Loss of ATRAID function results in selective resistance to N-BP-mediated loss of cell viability and the prevention of alendronate-mediated inhibition of prenylation. ATRAID is required for alendronate inhibition of osteoclast function, and ATRAID-deficient mice have impaired therapeutic responses to alendronate in both postmenopausal and senile (old age) osteoporosis models. Last, we performed exome sequencing on patients taking N-BPs that suffered ONJ or an AFF. ATRAID is one of three genes that contain rare nonsynonymous coding variants in patients with ONJ or an AFF that is also differentially expressed in poor outcome groups of patients treated with N-BPs. We functionally validated this patient variation in ATRAID as conferring cellular hypersensitivity to N-BPs. Our work adds key insight into the mechanistic action of N-BPs and the processes that might underlie differential responsiveness to N-BPs in people.


Asunto(s)
Difosfonatos , Nitrógeno , Alendronato/farmacología , Animales , Huesos , Difosfonatos/farmacología , Difosfonatos/uso terapéutico , Humanos , Ratones , Osteoclastos
3.
Elife ; 72018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29745899

RESUMEN

Nitrogen-containing-bisphosphonates (N-BPs) are a class of drugs widely prescribed to treat osteoporosis and other bone-related diseases. Although previous studies have established that N-BPs function by inhibiting the mevalonate pathway in osteoclasts, the mechanism by which N-BPs enter the cytosol from the extracellular space to reach their molecular target is not understood. Here, we implemented a CRISPRi-mediated genome-wide screen and identified SLC37A3 (solute carrier family 37 member A3) as a gene required for the action of N-BPs in mammalian cells. We observed that SLC37A3 forms a complex with ATRAID (all-trans retinoic acid-induced differentiation factor), a previously identified genetic target of N-BPs. SLC37A3 and ATRAID localize to lysosomes and are required for releasing N-BP molecules that have trafficked to lysosomes through fluid-phase endocytosis into the cytosol. Our results elucidate the route by which N-BPs are delivered to their molecular target, addressing a key aspect of the mechanism of action of N-BPs that may have significant clinical relevance.


Asunto(s)
Antiportadores/metabolismo , Conservadores de la Densidad Ósea/metabolismo , Difosfonatos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Nitrógeno/metabolismo , Animales , Antiportadores/genética , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Pruebas Genéticas , Estudio de Asociación del Genoma Completo , Humanos , Lisosomas/metabolismo , Ratones , Proteínas de Transporte de Monosacáridos/genética
4.
Cell Metab ; 14(4): 516-27, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21982711

RESUMEN

Under conditions of obesity and insulin resistance, the serine/threonine protein kinase Akt/PKB is required for lipid accumulation in liver. Two forkhead transcription factors, FoxA2 and FoxO1, have been suggested to function downstream of and to be negatively regulated by Akt and are proposed as key determinants of hepatic triglyceride content. In this study, we utilize genetic loss of function experiments to show that constitutive activation of neither FoxA2 nor FoxO1 can account for the protection from steatosis afforded by deletion of Akt2 in liver. Rather, another downstream target positively regulated by Akt, the mTORC1 complex, is required in vivo for de novo lipogenesis and Srebp1c expression. Nonetheless, activation of mTORC1 and SREBP1c is not sufficient to drive postprandial lipogenesis in the absence of Akt2. These data show that insulin signaling through Akt2 promotes anabolic lipid metabolism independent of Foxa2 or FoxO1 and through pathways additional to the mTORC1-dependent activation of SREBP1c.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Antirreumáticos/farmacología , Aurotioglucosa/farmacología , Dieta Alta en Grasa , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Serina-Treonina Quinasas TOR , Triglicéridos/metabolismo
5.
Cell ; 146(3): 408-20, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816276

RESUMEN

The nutrient- and growth factor-responsive kinase mTOR complex 1 (mTORC1) regulates many processes that control growth, including protein synthesis, autophagy, and lipogenesis. Through unknown mechanisms, mTORC1 promotes the function of SREBP, a master regulator of lipo- and sterolgenic gene transcription. Here, we demonstrate that mTORC1 regulates SREBP by controlling the nuclear entry of lipin 1, a phosphatidic acid phosphatase. Dephosphorylated, nuclear, catalytically active lipin 1 promotes nuclear remodeling and mediates the effects of mTORC1 on SREBP target gene, SREBP promoter activity, and nuclear SREBP protein abundance. Inhibition of mTORC1 in the liver significantly impairs SREBP function and makes mice resistant, in a lipin 1-dependent fashion, to the hepatic steatosis and hypercholesterolemia induced by a high-fat and -cholesterol diet. These findings establish lipin 1 as a key component of the mTORC1-SREBP pathway.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Animales , Humanos , Metabolismo de los Lípidos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Fosfatidato Fosfatasa , Serina-Treonina Quinasas TOR
6.
Science ; 332(6035): 1317-22, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21659604

RESUMEN

The mammalian target of rapamycin (mTOR) protein kinase is a master growth promoter that nucleates two complexes, mTORC1 and mTORC2. Despite the diverse processes controlled by mTOR, few substrates are known. We defined the mTOR-regulated phosphoproteome by quantitative mass spectrometry and characterized the primary sequence motif specificity of mTOR using positional scanning peptide libraries. We found that the phosphorylation response to insulin is largely mTOR dependent and that mTOR exhibits a unique preference for proline, hydrophobic, and aromatic residues at the +1 position. The adaptor protein Grb10 was identified as an mTORC1 substrate that mediates the inhibition of phosphoinositide 3-kinase typical of cells lacking tuberous sclerosis complex 2 (TSC2), a tumor suppressor and negative regulator of mTORC1. Our work clarifies how mTORC1 inhibits growth factor signaling and opens new areas of investigation in mTOR biology.


Asunto(s)
Proteína Adaptadora GRB10/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Humanos , Insulina/metabolismo , Espectrometría de Masas , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Naftiridinas/farmacología , Fosfoproteínas/metabolismo , Fosforilación , Proteoma/metabolismo , Sirolimus/farmacología
7.
Sci Signal ; 4(161): ra10, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21343617

RESUMEN

In response to environmental cues, cells coordinate a balance between anabolic and catabolic pathways. In eukaryotes, growth factors promote anabolic processes and stimulate cell growth, proliferation, and survival through activation of the phosphoinositide 3-kinase (PI3K)-Akt pathway. Akt-mediated phosphorylation of glycogen synthase kinase-3ß (GSK-3ß) inhibits its enzymatic activity, thereby stimulating glycogen synthesis. We show that GSK-3ß itself inhibits Akt by controlling the mammalian target of rapamycin complex 2 (mTORC2), a key activating kinase for Akt. We found that during cellular stress, GSK-3ß phosphorylated the mTORC2 component rictor at serine-1235, a modification that interfered with the binding of Akt to mTORC2. The inhibitory effect of GSK-3ß on mTORC2-Akt signaling and cell proliferation was eliminated by blocking phosphorylation of rictor at serine-1235. Thus, in response to cellular stress, GSK-3ß restrains mTORC2-Akt signaling by specifically phosphorylating rictor, thereby balancing the activities of GSK-3ß and Akt, two opposing players in glucose metabolism.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo , Proteínas Portadoras/química , Activación Enzimática , Glucógeno Sintasa Quinasa 3 beta , Humanos , Fosforilación , Proteína Asociada al mTOR Insensible a la Rapamicina , Serina/metabolismo , Especificidad por Sustrato
8.
Nature ; 468(7327): 1100-4, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21179166

RESUMEN

The multi-component mechanistic target of rapamycin complex 1 (mTORC1) kinase is the central node of a mammalian pathway that coordinates cell growth with the availability of nutrients, energy and growth factors. Progress has been made in the identification of mTORC1 pathway components and in understanding their functions in cells, but there is relatively little known about the role of the pathway in vivo. Specifically, we have little knowledge regarding the role mTOCR1 has in liver physiology. In fasted animals, the liver performs numerous functions that maintain whole-body homeostasis, including the production of ketone bodies for peripheral tissues to use as energy sources. Here we show that mTORC1 controls ketogenesis in mice in response to fasting. We find that liver-specific loss of TSC1 (tuberous sclerosis 1), an mTORC1 inhibitor, leads to a fasting-resistant increase in liver size, and to a pronounced defect in ketone body production and ketogenic gene expression on fasting. The loss of raptor (regulatory associated protein of mTOR, complex 1) an essential mTORC1 component, has the opposite effects. In addition, we find that the inhibition of mTORC1 is required for the fasting-induced activation of PPARα (peroxisome proliferator activated receptor α), the master transcriptional activator of ketogenic genes, and that suppression of NCoR1 (nuclear receptor co-repressor 1), a co-repressor of PPARα, reactivates ketogenesis in cells and livers with hyperactive mTORC1 signalling. Like livers with activated mTORC1, livers from aged mice have a defect in ketogenesis, which correlates with an increase in mTORC1 signalling. Moreover, we show that the suppressive effects of mTORC1 activation and ageing on PPARα activity and ketone production are not additive, and that mTORC1 inhibition is sufficient to prevent the ageing-induced defect in ketogenesis. Thus, our findings reveal that mTORC1 is a key regulator of PPARα function and hepatic ketogenesis and suggest a role for mTORC1 activity in promoting the ageing of the liver.


Asunto(s)
Envejecimiento , Ayuno/metabolismo , Regulación de la Expresión Génica , Cuerpos Cetónicos/biosíntesis , Proteínas/metabolismo , Animales , Línea Celular , Humanos , Cuerpos Cetónicos/metabolismo , Hígado/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos , Co-Represor 1 de Receptor Nuclear/metabolismo , PPAR alfa/antagonistas & inhibidores , PPAR alfa/metabolismo , Proteínas/genética , Serina-Treonina Quinasas TOR
9.
Mol Cell ; 40(2): 310-22, 2010 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-20965424

RESUMEN

The large serine/threonine protein kinase mTOR regulates cellular and organismal homeostasis by coordinating anabolic and catabolic processes with nutrient, energy, and oxygen availability and growth factor signaling. Cells and organisms experience a wide variety of insults that perturb the homeostatic systems governed by mTOR and therefore require appropriate stress responses to allow cells to continue to function. Stress can manifest from an excess or lack of upstream signals or as a result of genetic perturbations in upstream effectors of the pathway. mTOR nucleates two large protein complexes that are important nodes in the pathways that help buffer cells from stresses, and are implicated in the progression of stress-associated phenotypes and diseases, such as aging, tumorigenesis, and diabetes. This review focuses on the key components of the mTOR complex 1 pathway and on how various stresses impinge upon them.


Asunto(s)
Alimentos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Estrés Fisiológico/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Modelos Biológicos , Complejos Multiproteicos , Proteínas , Factores de Transcripción/metabolismo
10.
Mol Cancer Res ; 8(6): 896-906, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20501647

RESUMEN

In animal cells, growth factors coordinate cell proliferation and survival by regulating the phosphoinositide 3-kinase/Akt signaling pathway. Deregulation of this signaling pathway is common in a variety of human cancers. The PI3K-dependent signaling kinase complex defined as mammalian target of rapamycin complex 2 (mTORC2) functions as a regulatory Ser-473 kinase of Akt. We find that activation of mTORC2 by growth factor signaling is linked to the specific phosphorylation of its component rictor on Thr-1135. The phosphorylation of this site is induced by the growth factor stimulation and expression of the oncogenic forms of ras or PI3K. Rictor phosphorylation is sensitive to the inhibition of PI3K, mTOR, or expression of integrin-linked kinase. The substitution of wild-type rictor with its specific phospho-mutants in rictor null mouse embryonic fibroblasts did not alter the growth factor-dependent phosphorylation of Akt, indicating that the rictor Thr-1135 phosphorylation is not critical in the regulation of the mTORC2 kinase activity. We found that this rictor phosphorylation takes place in the mTORC2-deficient cells, suggesting that this modification might play a role in the regulation of not only mTORC2 but also the mTORC2-independent function of rictor.


Asunto(s)
Proteínas Portadoras/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , Treonina/genética , Animales , Proteínas Portadoras/genética , Dominio Catalítico/genética , Línea Celular , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Fibroblastos/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina
11.
Cell ; 137(5): 873-86, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19446321

RESUMEN

The mTORC1 and mTORC2 pathways regulate cell growth, proliferation, and survival. We identify DEPTOR as an mTOR-interacting protein whose expression is negatively regulated by mTORC1 and mTORC2. Loss of DEPTOR activates S6K1, Akt, and SGK1, promotes cell growth and survival, and activates mTORC1 and mTORC2 kinase activities. DEPTOR overexpression suppresses S6K1 but, by relieving feedback inhibition from mTORC1 to PI3K signaling, activates Akt. Consistent with many human cancers having activated mTORC1 and mTORC2 pathways, DEPTOR expression is low in most cancers. Surprisingly, DEPTOR is highly overexpressed in a subset of multiple myelomas harboring cyclin D1/D3 or c-MAF/MAFB translocations. In these cells, high DEPTOR expression is necessary to maintain PI3K and Akt activation and a reduction in DEPTOR levels leads to apoptosis. Thus, we identify a novel mTOR-interacting protein whose deregulated overexpression in multiple myeloma cells represents a mechanism for activating PI3K/Akt signaling and promoting cell survival.


Asunto(s)
Supervivencia Celular , Mieloma Múltiple/metabolismo , Proteínas Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular , Ciclina D1/metabolismo , Ciclina D3 , Ciclinas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
12.
Science ; 320(5882): 1496-501, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18497260

RESUMEN

The multiprotein mTORC1 protein kinase complex is the central component of a pathway that promotes growth in response to insulin, energy levels, and amino acids and is deregulated in common cancers. We find that the Rag proteins--a family of four related small guanosine triphosphatases (GTPases)--interact with mTORC1 in an amino acid-sensitive manner and are necessary for the activation of the mTORC1 pathway by amino acids. A Rag mutant that is constitutively bound to guanosine triphosphate interacted strongly with mTORC1, and its expression within cells made the mTORC1 pathway resistant to amino acid deprivation. Conversely, expression of a guanosine diphosphate-bound Rag mutant prevented stimulation of mTORC1 by amino acids. The Rag proteins do not directly stimulate the kinase activity of mTORC1, but, like amino acids, promote the intracellular localization of mTOR to a compartment that also contains its activator Rheb.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dimerización , Guanosina Trifosfato/metabolismo , Humanos , Insulina/metabolismo , Leucina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas/genética , Complejos Multiproteicos , Proteínas Mutantes/metabolismo , Mutación , Neuropéptidos/metabolismo , Fosforilación , Unión Proteica , Proteínas Quinasas/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro , Proteína Reguladora Asociada a mTOR , Serina-Treonina Quinasas TOR
13.
Mol Cell ; 25(6): 903-15, 2007 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-17386266

RESUMEN

The heterotrimeric mTORC1 protein kinase nucleates a signaling network that promotes cell growth in response to insulin and becomes constitutively active in cells missing the TSC1 or TSC2 tumor suppressors. Insulin stimulates the phosphorylation of S6K1, an mTORC1 substrate, but it is not known how mTORC1 kinase activity is regulated. We identify PRAS40 as a raptor-interacting protein that binds to mTORC1 in insulin-deprived cells and whose in vitro interaction with mTORC1 is disrupted by high salt concentrations. PRAS40 inhibits cell growth, S6K1 phosphorylation, and rheb-induced activation of the mTORC1 pathway, and in vitro it prevents the great increase in mTORC1 kinase activity induced by rheb1-GTP. Insulin stimulates Akt/PKB-mediated phosphorylation of PRAS40, which prevents its inhibition of mTORC1 in cells and in vitro. We propose that the relative strengths of the rheb- and PRAS40-mediated inputs to mTORC1 set overall pathway activity and that insulin activates mTORC1 through the coordinated regulation of both.


Asunto(s)
Insulina/fisiología , Fosfoproteínas/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras , Línea Celular , Inhibidores Enzimáticos/metabolismo , Humanos , Cinética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Fosforilación , Proteínas , Serina-Treonina Quinasas TOR
14.
Cell Div ; 1: 23, 2006 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-17049078

RESUMEN

BACKGROUND: A high proliferative capacity of tumor cells usually is associated with shortened patient survival. Disruption of the RB pathway, which is critically involved in regulating the G1 to S cell cycle transition, is a frequent target of oncogenic events that are thought to contribute to increased proliferation during tumor progression. Previously, we determined that p18INK4c, an essential gene for normal plasma cell differentiation, was bi-allelically deleted in five of sixteen multiple myeloma (MM) cell lines. The present study was undertaken to investigate a possible role of p18INK4c in increased proliferation of myeloma tumors as they progress. RESULTS: Thirteen of 40 (33%) human myeloma cell lines do not express normal p18INK4c, with bi-allelic deletion of p18 in twelve, and expression of a mutated p18 fragment in one. Bi-allelic deletion of p18, which appears to be a late progression event, has a prevalence of about 2% in 261 multiple myeloma (MM) tumors, but the prevalence is 6 to 10% in the 50 tumors with a high expression-based proliferation index. Paradoxically, 24 of 40 (60%) MM cell lines, and 30 of 50 (60%) MM tumors with a high proliferation index express an increased level of p18 RNA compared to normal bone marrow plasma cells, whereas this occurs in only five of the 151 (3%) MM tumors with a low proliferation index. Tumor progression is often accompanied by increased p18 expression and an increased proliferation index. Retroviral-mediated expression of exogenous p18 results in marked growth inhibition in three MM cell lines that express little or no endogenous p18, but has no effect in another MM cell line that already expresses a high level of p18. CONCLUSION: Paradoxically, although loss of p18 appears to contribute to increased proliferation of nearly 10% of MM tumors, most MM cell lines and proliferative MM tumors have increased expression of p18. Apart from a small fraction of cell lines and tumors that have inactivated the RB1 protein, it is not yet clear how other MM cell lines and tumors have become insensitive to the anti-proliferative effects of increased p18 expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...