Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(2): 359-376, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316929

RESUMEN

The microbiota-gut-brain axis has been shown to play an important role in the stress response, but previous work has focused primarily on the role of the bacteriome. The gut virome constitutes a major portion of the microbiome, with bacteriophages having the potential to remodel bacteriome structure and activity. Here we use a mouse model of chronic social stress, and employ 16S rRNA and whole metagenomic sequencing on faecal pellets to determine how the virome is modulated by and contributes to the effects of stress. We found that chronic stress led to behavioural, immune and bacteriome alterations in mice that were associated with changes in the bacteriophage class Caudoviricetes and unassigned viral taxa. To determine whether these changes were causally related to stress-associated behavioural or physiological outcomes, we conducted a faecal virome transplant from mice before stress and autochthonously transferred it to mice undergoing chronic social stress. The transfer of the faecal virome protected against stress-associated behaviour sequelae and restored stress-induced changes in select circulating immune cell populations, cytokine release, bacteriome alterations and gene expression in the amygdala. These data provide evidence that the virome plays a role in the modulation of the microbiota-gut-brain axis during stress, indicating that these viral populations should be considered when designing future microbiome-directed therapies.


Asunto(s)
Bacteriófagos , Microbiota , Virus , Animales , Ratones , Viroma , ARN Ribosómico 16S/genética , Virus/genética , Bacteriófagos/genética , Inmunidad
2.
Sci Rep ; 13(1): 7899, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193715

RESUMEN

Nisin is a broad spectrum bacteriocin used extensively as a food preservative that was identified in Lactococcus lactis nearly a century ago. We show that orally-ingested nisin survives transit through the porcine gastrointestinal tract intact (as evidenced by activity and molecular weight determination) where it impacts both the composition and functioning of the microbiota. Specifically, nisin treatment caused a reversible decrease in Gram positive bacteria, resulting in a reshaping of the Firmicutes and a corresponding relative increase in Gram negative Proteobacteria. These changes were mirrored by the modification in relative abundance of pathways involved in acetate, butyrate (decreased) and propionate (increased) synthesis which correlated with overall reductions in short chain fatty acid levels in stool. These reversible changes that occur as a result of nisin ingestion demonstrate the potential of bacteriocins like nisin to shape mammalian microbiomes and impact on the functionality of the community.


Asunto(s)
Bacteriocinas , Microbioma Gastrointestinal , Lactococcus lactis , Nisina , Animales , Porcinos , Nisina/farmacología , Nisina/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacteriocinas/farmacología , Bacteriocinas/metabolismo , Bacterias Grampositivas/metabolismo , Lactococcus lactis/metabolismo , Mamíferos/metabolismo
3.
Brain Behav Immun ; 104: 191-204, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35688340

RESUMEN

BACKGROUND AND AIM: Relative to men, women present with pain conditions more commonly. Although consistent differences exist between men and women in terms of physiological pain sensitivity, the underlying mechanisms are incompletely understood and yet could inform the development of effective sex specific treatments for pain. The gut microbiota can modulate nervous system functioning, including pain signaling pathways. We hypothesized that the gut microbiota and critical components of the gut-brain axis might influence electrical pain thresholds. Further, we hypothesized that sex, menstrual cycle, and hormonal contraceptive use might account for inter-sex differences in pain perception. METHODS: Healthy, non-obese males (N = 15) and females (N = 16), (nine of whom were using hormonal contraceptives), were recruited. Male subjects were invited to undergo testing once, whereas females were invited three times across the menstrual cycle, based on self-reported early follicular (EF), late follicular (LF), or mid-luteal (ML) phase. On test days, electrical stimulation on the right ankle was performed; salivary cortisol levels were measured in the morning; levels of lipopolysaccharide-binding protein (LBP), soluble CD14 (sCD14), pro-inflammatory cytokines were assessed in plasma, and microbiota composition and short-chain fatty acids (SCFAs) levels were determined in fecal samples. RESULTS: We observed that the pain tolerance threshold/pain sensation threshold (PTT/PST) ratio was significantly lesser in women than men, but not PST or PTT alone. Further, hormonal contraceptive use was associated with increased LBP levels (LF & ML phase), whilst sCD14 levels or inflammatory cytokines were not affected. Interestingly, in women, hormonal contraceptive use was associated with an increase in the relative abundance of Erysipelatoclostridium, and the relative abundances of certain bacterial genera correlated positively with pain sensation thresholds (Prevotella and Megasphera) during the LF phase and cortisol awakening response (Anaerofustis) during the ML phase. In comparison with men, women displayed overall stronger associations between i) SCFAs data, ii) cortisol data, iii) inflammatory cytokines and PTT and PST. DISCUSSION AND CONCLUSION: Our findings support the hypothesis that the gut microbiota may be one of the factors determining the physiological inter-sex differences in pain perception. Further research is needed to investigate the molecular mechanisms by which specific sex hormones and gut microbes modulate pain signaling pathways, but this study highlights the possibilities for innovative individual targeted therapies for pain management.

4.
Eur Neuropsychopharmacol ; 41: 152-159, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33191074

RESUMEN

The gut microbiota modulates brain physiology, development, and behavior and has been implicated as a key regulator in several central nervous system disorders. Its effect on the metabolic coupling between neurons and astrocytes has not been studied to date, even though this is an important component of brain energy metabolism and physiology and it is perturbed in neurodegenerative and cognitive disorders. In this study, we have investigated the mRNA expression of 6 genes encoding proteins implicated in the astrocyte-neuron lactate shuttle (Atp1a2, Ldha, Ldhb, Mct1, Gys1, Pfkfb3), in relation to different gut microbiota manipulations, in the mouse brain hippocampus, a region with critical functions in cognition and behavior. We have discovered that Atp1a2 and Pfkfb3, encoding the ATPase, Na+/K+ transporting, alpha 2 sub-unit, respectively and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, two genes predominantly expressed in astrocytes, were upregulated in the hippocampus after microbial colonization of germ-free mice for 24 h, compared with conventionally raised mice. Pfkfb3 was also upregulated in germ-free mice compared with conventionally raised mice, while an increase in Atp1a2 expression in germ-free mice was confirmed only at the protein level by Western blot. In a separate cohort of mice, Atp1a2 and Pfkfb3 mRNA expression was upregulated in the hippocampus following 6-week dietary supplementation with prebiotics (fructo- and galacto-oligosaccharides) in an animal model of chronic psychosocial stress. To our knowledge, these findings are the first to report an influence of the gut microbiota and prebiotics on mRNA expression of genes implicated in the metabolic coupling between neurons and astrocytes.


Asunto(s)
Astrocitos/metabolismo , Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes/fisiología , Hipocampo/metabolismo , Ácido Láctico/metabolismo , Neuronas/metabolismo , Animales , Metabolismo Energético/fisiología , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Prebióticos/administración & dosificación
5.
EBioMedicine ; 59: 102968, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32861200

RESUMEN

BACKGROUND: Evidence is accruing to suggest that microbiota-gut-brain signalling plays a regulatory role in cardiorespiratory physiology. Chronic intermittent hypoxia (CIH), modelling human sleep apnoea, affects gut microbiota composition and elicits cardiorespiratory morbidity. We investigated if treatment with prebiotics ameliorates cardiorespiratory dysfunction in CIH-exposed rats. METHODS: Adult male rats were exposed to CIH (96 cycles/day, 6.0% O2 at nadir) for 14 consecutive days with and without prebiotic supplementation (fructo- and galacto-oligosaccharides) beginning two weeks prior to gas exposures. FINDINGS: CIH increased apnoea index and caused hypertension. CIH exposure had modest effects on the gut microbiota, decreasing the relative abundance of Lactobacilli species, but had no effect on microbial functional characteristics. Faecal short-chain fatty acid (SCFA) concentrations, plasma and brainstem pro-inflammatory cytokine concentrations and brainstem neurochemistry were unaffected by exposure to CIH. Prebiotic administration modulated gut microbiota composition and diversity, altering gut-metabolic (GMMs) and gut-brain (GBMs) modules and increased faecal acetic and propionic acid concentrations, but did not prevent adverse CIH-induced cardiorespiratory phenotypes. INTERPRETATION: CIH-induced cardiorespiratory dysfunction is not dependant upon changes in microbial functional characteristics and decreased faecal SCFA concentrations. Prebiotic-related modulation of microbial function and resultant increases in faecal SCFAs were not sufficient to prevent CIH-induced apnoea and hypertension in our model. Our results do not exclude the potential for microbiota-gut-brain axis involvement in OSA-related cardiorespiratory morbidity, but they demonstrate that in a relatively mild model of CIH, sufficient to evoke classic cardiorespiratory dysfunction, such changes are not obligatory for the development of morbidity, but may become relevant in the elaboration and maintenance of cardiorespiratory morbidity with progressive disease. FUNDING: Department of Physiology and APC Microbiome Ireland, University College Cork, Ireland. APC Microbiome Ireland is funded by Science Foundation Ireland, through the Government's National Development Plan.


Asunto(s)
Apnea/etiología , Ácidos Grasos Volátiles/metabolismo , Heces/química , Microbioma Gastrointestinal , Hipertensión/etiología , Hipoxia/metabolismo , Prebióticos/administración & dosificación , Animales , Apnea/diagnóstico , Apnea/metabolismo , Biomarcadores , Análisis de los Gases de la Sangre , Tronco Encefálico/metabolismo , Catecolaminas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ácidos Grasos Volátiles/análisis , Pruebas de Función Cardíaca , Hipertensión/diagnóstico , Hipertensión/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Ratas , Pruebas de Función Respiratoria
6.
EBioMedicine ; 55: 102769, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32403084

RESUMEN

BACKGROUND: Multiple factors contribute to the etiology of addiction, including genetics, sex, and a number of addiction-related behavioral traits. One behavioral trait where individuals assign incentive salience to food stimuli ("sign-trackers", ST) are more impulsive compared to those that do not ("goal-trackers", GT), as well as more sensitive to drugs and drug stimuli. Furthermore, this GT/ST phenotype predicts differences in other behavioral measures. Recent studies have implicated the gut microbiota as a key regulator of brain and behavior, and have shown that many microbiota-associated changes occur in a sex-dependent manner. However, few studies have examined how the microbiome might influence addiction-related behaviors. To this end, we sought to determine if gut microbiome composition was correlated with addiction-related behaviors determined by the GT/ST phenotype. METHODS: Outbred male (N=101) and female (N=101) heterogeneous stock rats underwent a series of behavioral tests measuring impulsivity, attention, reward-learning, incentive salience, and locomotor response. Cecal microbiome composition was estimated using 16S rRNA gene amplicon sequencing. Behavior and microbiome were characterized and correlated with behavioral phenotypes. Robust sex differences were observed in both behavior and microbiome; further analyses were conducted within sex using the pre-established goal/sign-tracking (GT/ST) phenotype and partial least squares differential analysis (PLS-DA) clustered behavioral phenotype. RESULTS: Overall microbiome composition was not associated to the GT/ST phenotype. However, microbial alpha diversity was significantly decreased in female STs. On the other hand, a measure of impulsivity had many significant correlations to microbiome in both males and females. Several measures of impulsivity were correlated with the genus Barnesiella in females. Female STs had notable correlations between microbiome and attentional deficient. In both males and females, many measures were correlated with the bacterial families Ruminocococcaceae and Lachnospiraceae. CONCLUSIONS: These data demonstrate correlations between several addiction-related behaviors and the microbiome specific to sex.


Asunto(s)
Trastornos Relacionados con Cocaína/microbiología , Cocaína/farmacología , Condicionamiento Operante/efectos de los fármacos , Descuento por Demora/efectos de los fármacos , Locomoción/efectos de los fármacos , Refuerzo en Psicología , Animales , Animales no Consanguíneos , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Ciego/microbiología , Clostridiales/clasificación , Clostridiales/genética , Clostridiales/aislamiento & purificación , Trastornos Relacionados con Cocaína/fisiopatología , Trastornos Relacionados con Cocaína/psicología , Condicionamiento Operante/fisiología , Descuento por Demora/fisiología , Euryarchaeota/clasificación , Euryarchaeota/genética , Euryarchaeota/aislamiento & purificación , Femenino , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Microbioma Gastrointestinal/genética , Conducta Impulsiva/fisiología , Locomoción/fisiología , Masculino , Fenotipo , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Ratas , Factores Sexuales
8.
Eur J Neurosci ; 51(4): 1042-1058, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31339598

RESUMEN

Nutritional interventions targeting the microbiota-gut-brain axis are proposed to modulate stress-induced dysfunction of physiological processes and brain development. Maternal separation (MS) in rats induces long-term alterations to behaviour, pain responses, gut microbiome and brain neurochemistry. In this study, the effects of dietary interventions (milk fat globule membrane [MFGM] and a polydextrose/galacto-oligosaccharide prebiotic blend) were evaluated. Diets were provided from postnatal day 21 to both non-separated and MS offspring. Spatial memory, visceral sensitivity and stress reactivity were assessed in adulthood. Gene transcripts associated with cognition and stress and the caecal microbiota composition were analysed. MS-induced visceral hypersensitivity was ameliorated by MFGM and to greater extent with the combination of MFGM and prebiotic blend. Furthermore, spatial learning and memory were improved by prebiotics and MFGM alone and with the combination. The prebiotic blend and the combination of the prebiotics and MFGM appeared to facilitate return to baseline with regard to HPA axis response to the restraint stress, which can be beneficial in times where coping mechanisms to stressful events are required. Interestingly, the combination of MFGM and prebiotic reduced the long-term impact of MS on a marker of myelination in the prefrontal cortex. MS affected the microbiota at family level only, while MFGM, the prebiotic blend and the combination influenced abundance at family and genus level as well as influencing beta-diversity levels. In conclusion, intervention with MFGM and prebiotic blend significantly impacted the composition of the microbiota as well as ameliorating some of the long-term effects of early-life stress.


Asunto(s)
Microbioma Gastrointestinal , Privación Materna , Microbiota , Animales , Encéfalo , Glucolípidos , Glicoproteínas , Sistema Hipotálamo-Hipofisario , Gotas Lipídicas , Sistema Hipófiso-Suprarrenal , Prebióticos , Ratas , Estrés Fisiológico
9.
Lancet Neurol ; 19(2): 179-194, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31753762

RESUMEN

Research into the role of the gut microbiome in modulating brain function has rapidly increased over the past 10 years, albeit chiefly in animal models. Increasing clinical and preclinical evidence implicates the microbiome as a possible key susceptibility factor for neurological disorders, including Alzheimer's disease, autism spectrum disorder, multiple sclerosis, Parkinson's disease, and stroke. Cross-sectional clinical studies are bolstering the concept of altered microbial composition contributing to the pathophysiology of such diseases. However, the field is nascent, and interpretation of such data is often difficult given that the composition of the microbiome is influenced by various factors such as diet and exercise. Longitudinal studies and randomised controlled trials in humans are needed to find out if targeting the microbiome can yield novel therapeutic strategies. Systems biology approaches will also be important in integrating such data with genomic and metabolomic datasets from clinical cohorts with neurological disease to help guide individual treatment selection.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Enfermedades del Sistema Nervioso/microbiología , Enfermedades Neurodegenerativas/microbiología , Enfermedad de Alzheimer/microbiología , Trastorno del Espectro Autista/microbiología , Encéfalo/microbiología , Demencia/microbiología , Progresión de la Enfermedad , Humanos , Microbiota/fisiología , Esclerosis Múltiple/microbiología , Enfermedad de Parkinson/microbiología , Factores de Riesgo
10.
Physiol Rev ; 99(4): 1877-2013, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31460832

RESUMEN

The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson's disease, and Alzheimer's disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.


Asunto(s)
Bacterias/metabolismo , Encefalopatías/microbiología , Encéfalo/microbiología , Microbioma Gastrointestinal , Intestinos/microbiología , Factores de Edad , Envejecimiento , Animales , Bacterias/inmunología , Bacterias/patogenicidad , Conducta , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encefalopatías/metabolismo , Encefalopatías/fisiopatología , Encefalopatías/psicología , Disbiosis , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/microbiología , Sistema Nervioso Entérico/fisiopatología , Interacciones Huésped-Patógeno , Humanos , Intestinos/inmunología , Neuroinmunomodulación , Plasticidad Neuronal , Factores de Riesgo
11.
ACS Chem Neurosci ; 10(9): 3953-3960, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31415146

RESUMEN

Microbial colonization of the gastrointestinal tract plays a crucial role in the development of enteric and central nervous system functionality. The serotonergic system has been heavily implicated in microbiota-gut-brain axis signaling, particularly in proof-of-principle studies in germ-free (GF) animals. One aspect of the serotonergic system that has been left unexplored in relation to the microbiota is the unique ability of the serotonin receptor 2C (5-HT2C) to undergo post-transcriptional editing, which has been implicated in decreased receptor functionality. We investigated whether GF mice, with absent microbiota from birth, have altered 5-HT2C receptor expression and editing in the brain, and if colonization of the microbiota is able to restore editing patterns. Next, we investigated whether microbiota depletion later in life using a chronic antibiotic treatment could affect 5-HT2C receptor editing patterns in rats. We found that GF mice have an increased prevalence of the edited 5-HT2C receptor isoforms in the amygdala, hypothalamus, prefrontal cortex, and striatum, which was partially normalized upon colonization post-weaning. However, no alterations were observed in the hypothalamus after microbiota depletion using an antibiotic treatment in adult rats. This suggests that alterations in the microbiome during development, but not later in life, could influence 5-HT2C receptor editing patterns. Overall, these results demonstrate that the microbiota affects 5-HT2C receptor editing in the brain and may inform novel therapeutic strategies in conditions in which 5-HT2C receptor editing is altered, such as depression.


Asunto(s)
Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiología , Edición Génica/métodos , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo , Animales , Antibacterianos/farmacología , Encéfalo/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Vida Libre de Gérmenes/efectos de los fármacos , Vida Libre de Gérmenes/fisiología , Masculino , Ratones , Ratas , Ratas Sprague-Dawley
12.
Brain Sci ; 9(8)2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31357611

RESUMEN

The present study investigated the effects of chronic intermittent ethanol exposure and withdrawal on dendritic morphology and spine density in the agranular insular and prelimbic cortices. Adult male Sprague-Dawley rats were passively exposed to vaporized ethanol (~37 mg/L; 12 h/day) or air (control) for ten consecutive days. Dendritic length, branching, and spine density were quantified in layer II/III pyramidal neurons 24 hours or seven days following the final ethanol exposure. Compared to unexposed control animals there were structural alterations on neurons in the prelimbic cortex, and to a lesser extent the agranular insular cortex. The most prominent ethanol-related differences were the transient increases in dendritic length and branching in prelimbic neurons at 24 h post-cessation, and increased mushroom-shaped spines at seven days post-cessation. The results obtained in the prelimbic cortex are the opposite of those previously reported in the nucleus accumbens core (Peterson, et al. 2015), suggesting that these regions undergo distinct functional adaptations following ethanol exposure and withdrawal.

13.
Psychopharmacology (Berl) ; 236(5): 1671-1685, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30155748

RESUMEN

RATIONALE: Growing evidence supports a role for the microbiota in regulating gut-brain interactions and, thus, psychiatric disorders. Despite substantial scientific efforts to delineate the mechanism of action of psychotropic medications at a central nervous system (CNS) level, there remains a critical lack of understanding on how these drugs might affect the microbiota and gut physiology. OBJECTIVES: We investigated the antimicrobial activity of psychotropics against two bacterial strain residents in the human gut, Lactobacillus rhamnosus and Escherichia coli. In addition, we examined the impact of chronic treatment with these drugs on microbiota and intestinal parameters in the rat. RESULTS: In vitro fluoxetine and escitalopram showed differential antimicrobial effects. Lithium, valproate and aripiprazole administration significantly increased microbial species richness and diversity, while the other treatments were not significantly different from controls. At the genus level, several species belonging to Clostridium, Peptoclostridium, Intestinibacter and Christenellaceae were increased following treatment with lithium, valproate and aripiprazole when compared to the control group. Animals treated with escitalopram, venlafaxine, fluoxetine and aripiprazole exhibited an increased permeability in the ileum. CONCLUSIONS: These data show that psychotropic medications differentially influence the composition of gut microbiota in vivo and that fluoxetine and escitalopram have specific antimicrobial activity in vitro. Interestingly, drugs that significantly altered gut microbial composition did not increase intestinal permeability, suggesting that the two factors are not causally linked. Overall, unravelling the impact of psychotropics on gastrointestinal and microbiota measures offers the potential to provide critical insight into the mechanism of action and side effects of these medications.


Asunto(s)
Escherichia coli/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Lacticaseibacillus rhamnosus/efectos de los fármacos , Psicotrópicos/farmacología , Animales , Antibacterianos/farmacología , Relación Dosis-Respuesta a Droga , Escherichia coli/fisiología , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/fisiología , Humanos , Lacticaseibacillus rhamnosus/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
14.
Neuropharmacology ; 141: 249-259, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30172845

RESUMEN

Identifying biological markers predicting vulnerability to develop excessive alcohol consumption may lead to a real improvement of clinical care. With converging evidence suggesting that gut microbiome is capable of influencing brain and behavior, this study aimed at investigating whether changes in gut microbiome composition is associated with conditioned responses to alcohol. We trained Wistar rats to self-administer alcohol for a prolonged period before screening those exhibiting uncontrolled alcohol seeking and taking by modeling diagnostic criteria for AUD: inability to abstain during a signaled period of reward unavailability, increased motivation assessed in a progressive effortful task and persistent alcohol intake despite aversive foot shocks. Based on addiction criteria scores, rats were assigned to either Vulnerable or Resilient groups. Vulnerable rats not only displayed increased impulsive and compulsive behaviors, but also displayed increased relapse after abstinence and increased sensitivity to baclofen treatments compared to resilient animals. Then, rats underwent a 3-month wash out period before sacrifice. Dorsal striatum was collected to assess dopamine receptor mRNA expression, and 16S microbiome sequencing was performed on caecal contents. Multiple significant correlations were found between gut microbiome and impulsivity measures, as well as augmentations in striatal Dopamine 1 receptor (D1R) and reductions in D2R as vulnerability to AUD increased. Therefore, using a singular translational approach based on biobehavioral dispositions to excessive alcohol seeking without heavy intoxication, our observations suggests an association between gut microbiome composition and these specific "at risk" behavioral traits observed in our translationally relevant model.


Asunto(s)
Conducta Compulsiva/fisiopatología , Cuerpo Estriado/fisiología , Comportamiento de Búsqueda de Drogas/fisiología , Etanol/administración & dosificación , Microbioma Gastrointestinal/fisiología , Receptores de Dopamina D1/biosíntesis , Receptores de Dopamina D2/biosíntesis , Animales , Baclofeno/farmacología , Ciego/microbiología , Cuerpo Estriado/metabolismo , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Etanol/farmacología , Extinción Psicológica/efectos de los fármacos , Masculino , Motivación/efectos de los fármacos , Ratas , Autoadministración
15.
Brain Behav Immun ; 68: 261-273, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29104061

RESUMEN

Early-life stress is an established risk for the development of psychiatric disorders. Post-weaning isolation rearing of rats produces lasting developmental changes in behavior and brain function that may have translational pathophysiological relevance to alterations seen in schizophrenia, but the underlying mechanisms are unclear. Accumulating evidence supports the premise that gut microbiota influence brain development and function by affecting inflammatory mediators, the hypothalamic-pituitaryadrenal axis and neurotransmission, but there is little knowledge of whether the microbiota-gut-brain axis might contribute to the development of schizophrenia-related behaviors. To this end the effects of social isolation (SI; a well-validated animal model for schizophrenia)-induced changes in rat behavior were correlated with alterations in gut microbiota, hippocampal neurogenesis and brain cytokine levels. Twenty-four male Lister hooded rats were housed in social groups (group-housed, GH, 3 littermates per cage) or alone (SI) from weaning (post-natal day 24) for four weeks before recording open field exploration, locomotor activity/novel object discrimination (NOD), elevated plus maze, conditioned freezing response (CFR) and restraint stress at one week intervals. Post-mortem caecal microbiota composition, cortical and hippocampal cytokines and neurogenesis were correlated to indices of behavioral changes. SI rats were hyperactive in the open field and locomotor activity chambers traveling further than GH controls in the less aversive peripheral zone. While SI rats showed few alterations in plus maze or NOD they froze for significantly less time than GH following conditioning in the CFR paradigm, consistent with impaired associative learning and memory. SI rats had significantly fewer BrdU/NeuN positive cells in the dentate gyrus than GH controls. SI rats had altered microbiota composition with increases in Actinobacteria and decreases in the class Clostridia compared to GH controls. Differences were also noted at genus level. Positive correlations were seen between microbiota, hippocampal IL-6 and IL-10, conditioned freezing and open field exploration. Adverse early-life stress resulting from continuous SI increased several indices of 'anxiety-like' behavior and impaired associative learning and memory accompanied by changes to gut microbiota, reduced hippocampal IL-6, IL-10 and neurogenesis. This study suggests that early-life stress may produce long-lasting changes in gut microbiota contributing to development of abnormal neuronal and endocrine function and behavior which could play a pivotal role in the aetiology of psychiatric illness.


Asunto(s)
Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiología , Aislamiento Social , Animales , Ansiedad , Conducta Animal/efectos de los fármacos , Giro Dentado/fisiopatología , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Inmunidad/fisiología , Interleucina-10 , Interleucina-6 , Aprendizaje , Masculino , Memoria , Actividad Motora/efectos de los fármacos , Neurogénesis , Ratas , Esquizofrenia/fisiopatología , Conducta Social , Destete
16.
Sci Rep ; 7(1): 13523, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29051554

RESUMEN

ABSTACT: The gut hormone glucagon-like peptide (GLP)-1 and its analogues represent a new generation of anti-diabetic drugs, which have also demonstrated propensity to modulate host lipid metabolism. Despite this, drugs of this nature are currently limited to intramuscular administration routes due to intestinal degradation. The aim of this study was to design a recombinant microbial delivery vector for a GLP-1 analogue and assess the efficacy of the therapeutic in improving host glucose, lipid and cholesterol metabolism in diet induced obese rodents. Diet-induced obese animals received either Lactobacillus paracasei NFBC 338 transformed to express a long-acting analogue of GLP-1 or the isogenic control microbe which solely harbored the pNZ44 plasmid. Short-term GLP-1 microbe intervention in rats reduced serum low-density lipoprotein cholesterol, triglycerides and triglyceride-rich lipoprotein cholesterol substantially. Conversely, extended GLP-1 microbe intervention improved glucose-dependent insulin secretion, glucose metabolism and cholesterol metabolism, compared to the high-fat control group. Interestingly, the microbe significantly attenuated the adiposity associated with the model and altered the serum lipidome, independently of GLP-1 secretion. These data indicate that recombinant incretin-secreting microbes may offer a novel and safe means of managing cholesterol metabolism and diet induced dyslipidaemia, as well as insulin sensitivity in metabolic dysfunction.


Asunto(s)
Dieta Alta en Grasa , Péptido 1 Similar al Glucagón/genética , Lactobacillus/metabolismo , Obesidad/terapia , Animales , LDL-Colesterol/sangre , Modelos Animales de Enfermedad , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/microbiología , Lactobacillus/genética , Metaboloma , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Plásmidos/genética , Plásmidos/metabolismo , Ratas , Ratas Long-Evans , Triglicéridos/sangre
17.
EBioMedicine ; 24: 166-178, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28965876

RESUMEN

Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental conditions worldwide. There is growing awareness that ASD is highly comorbid with gastrointestinal distress and altered intestinal microbiome, and that host-microbiome interactions may contribute to the disease symptoms. However, the paucity of knowledge on gut-brain axis signaling in autism constitutes an obstacle to the development of precision microbiota-based therapeutics in ASD. To this end, we explored the interactions between intestinal microbiota, gut physiology and social behavior in a BTBR T+Itpr3tf/J mouse model of ASD. Here we show that a reduction in the relative abundance of very particular bacterial taxa in the BTBR gut - namely, bile-metabolizing Bifidobacterium and Blautia species, - is associated with deficient bile acid and tryptophan metabolism in the intestine, marked gastrointestinal dysfunction, as well as impaired social interactions in BTBR mice. Together these data support the concept of targeted manipulation of the gut microbiota for reversing gastrointestinal and behavioral symptomatology in ASD, and offer specific plausible targets in this endeavor.


Asunto(s)
Trastorno del Espectro Autista/complicaciones , Bacterias/clasificación , Ácidos y Sales Biliares/metabolismo , Enfermedades Gastrointestinales/microbiología , Triptófano/metabolismo , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Bacterias/aislamiento & purificación , Bifidobacterium/clasificación , Bifidobacterium/aislamiento & purificación , Modelos Animales de Enfermedad , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/metabolismo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Masculino , Ratones , Microbiota
18.
Biol Psychiatry ; 82(7): 472-487, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28242013

RESUMEN

BACKGROUND: The realization that the microbiota-gut-brain axis plays a critical role in health and disease, including neuropsychiatric disorders, is rapidly advancing. Nurturing a beneficial gut microbiome with prebiotics, such as fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS), is an appealing but underinvestigated microbiota manipulation. Here we tested whether chronic prebiotic treatment modifies behavior across domains relevant to anxiety, depression, cognition, stress response, and social behavior. METHODS: C57BL/6J male mice were administered FOS, GOS, or a combination of FOS+GOS for 3 weeks prior to testing. Plasma corticosterone, microbiota composition, and cecal short-chain fatty acids were measured. In addition, FOS+GOS- or water-treated mice were also exposed to chronic psychosocial stress, and behavior, immune, and microbiota parameters were assessed. RESULTS: Chronic prebiotic FOS+GOS treatment exhibited both antidepressant and anxiolytic effects. Moreover, the administration of GOS and the FOS+GOS combination reduced stress-induced corticosterone release. Prebiotics modified specific gene expression in the hippocampus and hypothalamus. Regarding short-chain fatty acid concentrations, prebiotic administration increased cecal acetate and propionate and reduced isobutyrate concentrations, changes that correlated significantly with the positive effects seen on behavior. Moreover, FOS+GOS reduced chronic stress-induced elevations in corticosterone and proinflammatory cytokine levels and depression-like and anxiety-like behavior in addition to normalizing the effects of stress on the microbiota. CONCLUSIONS: Taken together, these data strongly suggest a beneficial role of prebiotic treatment for stress-related behaviors. These findings strengthen the evidence base supporting therapeutic targeting of the gut microbiota for brain-gut axis disorders, opening new avenues in the field of nutritional neuropsychopharmacology.


Asunto(s)
Ansiolíticos/uso terapéutico , Antidepresivos/uso terapéutico , Ansiedad/terapia , Depresión/terapia , Oligosacáridos/uso terapéutico , Prebióticos , Animales , Ansiedad/sangre , Ansiedad/etiología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Corticosterona/sangre , Depresión/sangre , Depresión/etiología , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Expresión Génica/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neurotransmisores/sangre , Nocicepción/efectos de los fármacos , Estrés Psicológico/complicaciones , Triptófano/sangre
19.
Brain Behav Immun ; 65: 20-32, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28179108

RESUMEN

Over the last decade, there has been increased interest in the role of the gut microbiome in health including brain health. This is by no means a new theory; Elie Metchnikoff proposed over a century ago that targeting the gut by consuming lactic acid bacteria such as those in yogurt, could improve or delay the onset of cognitive decline associated with ageing. However, there is limited information characterising the relationship between the behavioural and physiological sequelae of ageing and alterations in the gut microbiome. To this end, we assessed the behavioural, physiological and caecal microbiota profile of aged male mice. Older mice (20-21months old) exhibited deficits in spatial memory and increases in anxiety-like behaviours compared to younger mice (2-3months old). They also exhibited increased gut permeability, which was directly correlated with elevations in peripheral pro-inflammatory cytokines. Furthermore, stress exacerbated the gut permeability of aged mice. Examination of the caecal microbiota revealed significant increases in phylum TM7, family Porphyromonadaceae and genus Odoribacter of aged mice. This represents a shift of aged microbiota towards a profile previously associated with inflammatory disease, particularly gastrointestinal and liver disorders. Furthermore, Porphyromonadaceae, which has also been associated with cognitive decline and affective disorders, was directly correlated with anxiety-like behaviour in aged mice. These changes suggest that changes in the gut microbiota and associated increases in gut permeability and peripheral inflammation may be important mediators of the impairments in behavioural, affective and cognitive functions seen in ageing.


Asunto(s)
Factores de Edad , Encéfalo/microbiología , Microbioma Gastrointestinal/fisiología , Animales , Ansiedad/microbiología , Ansiedad/fisiopatología , Conducta Animal/fisiología , Encéfalo/fisiología , Cognición/fisiología , Citocinas/sangre , Tracto Gastrointestinal/microbiología , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL/microbiología , Microbiota/fisiología , Porphyromonas/metabolismo , Porphyromonas/patogenicidad
20.
Behav Brain Res ; 323: 172-176, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28161446

RESUMEN

The gut microbiota includes a community of bacteria that play an integral part in host health and biological processes. Pronounced and repeated findings have linked gut microbiome to stress, anxiety, and depression. Currently, however, there remains only a limited set of studies focusing on microbiota change in substance abuse, including alcohol use disorder. To date, no studies have investigated the impact of vapour alcohol administration on the gut microbiome. For research on gut microbiota and addiction to proceed, an understanding of how route of drug administration affects gut microbiota must first be established. Animal models of alcohol abuse have proven valuable for elucidating the biological processes involved in addiction and alcohol-related diseases. This is the first study to investigate the effect of vapour route of ethanol administration on gut microbiota in mice. Adult male C57BL/6J mice were exposed to 4 weeks of chronic intermittent vapourized ethanol (CIE, N=10) or air (Control, N=9). Faecal samples were collected at the end of exposure followed by 16S sequencing and bioinformatic analysis. Robust separation between CIE and Control was seen in the microbiome, as assessed by alpha (p<0.05) and beta (p<0.001) diversity, with a notable decrease in alpha diversity in CIE. These results demonstrate that CIE exposure markedly alters the gut microbiota in mice. Significant increases in genus Alistipes (p<0.001) and significant reductions in genra Clostridium IV and XIVb (p<0.001), Dorea (p<0.01), and Coprococcus (p<0.01) were seen between CIE mice and Control. These findings support the viability of the CIE method for studies investigating the microbiota-gut-brain axis and align with previous research showing similar microbiota alterations in inflammatory states during alcoholic hepatitis and psychological stress.


Asunto(s)
Modelos Animales de Enfermedad , Etanol/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Alcoholismo/microbiología , Animales , Bacteroidetes/efectos de los fármacos , Clostridium/efectos de los fármacos , Heces/microbiología , Masculino , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...