Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Total Environ ; 899: 165647, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37474071

In September 2021 an eruption began of Cumbre Vieja, La Palma (Spain) that lasted 3 months. Previous studies have shown that volcanic ash particles can be associated with adverse effects on human health however, the reasons for this are unclear. Particle shape has been shown to contribute to cellular uptake in prostate cancer cells. Hence we aimed to study 3D structure, elemental composition and effects on cultured lung cells of particles collected from the La Palma volcanic eruption. 3D imaging of PM10 sized and below particles was performed using a LEXT OLS4100 confocal microscope (Olympus Corporation, Japan). A Zeiss EVO 50 (Carl Zeiss AG, Germany) Scanning Electron Microscope (SEM) was used to assess elemental composition. In addition, volcanic particle concentration dose response for pneumococcal adhesion to A549 human alveolar epithelial cells was investigated. Confocal microscopy showed that some PM10 and below sized particles had sharp or angular 3D appearance. SEM x-ray analysis indicated silicate particles with calcium, aluminium and iron. We observed increased colony forming units indicating increased Pneumococcal adhesion due to exposure of cells to volcanic particles. Thus in addition to the toxic nature of some volcanic particles, we suggest that the observed sharp surface particle features may help to explain adverse health effects associated with volcanic eruptions.


Imaging, Three-Dimensional , Volcanic Eruptions , Humans , Volcanic Eruptions/analysis , Spain , Lung , Microscopy, Confocal
2.
R Soc Open Sci ; 4(5): 161083, 2017 May.
Article En | MEDLINE | ID: mdl-28573002

The McMurdo Dry Valleys magmatic system, Antarctica, provides a world-class example of pervasive lateral magma flow on a continental scale. The lowermost intrusion (Basement Sill) offers detailed sections through the now frozen particle microstructure of a congested magma slurry. We simulated the flow regime in two and three dimensions using numerical models built on a finite-element mesh derived from field data. The model captures the flow behaviour of the Basement Sill magma over a viscosity range of 1-104 Pa s where the higher end (greater than or equal to 102 Pa s) corresponds to a magmatic slurry with crystal fractions varying between 30 and 70%. A novel feature of the model is the discovery of transient, low viscosity (less than or equal to 50 Pa s) high Reynolds number eddies formed along undulating contacts at the floor and roof of the intrusion. Numerical tracing of particle orbits implies crystals trapped in eddies segregate according to their mass density. Recovered shear strain rates (10-3-10-5 s-1) at viscosities equating to high particle concentrations (around more than 40%) in the Sill interior point to shear-thinning as an explanation for some types of magmatic layering there. Model transport rates for the Sill magmas imply a maximum emplacement time of ca 105 years, consistent with geochemical evidence for long-range lateral flow. It is a theoretically possibility that fast-flowing magma on a continental scale will be susceptible to planetary-scale rotational forces.

3.
Sci Total Environ ; 590-591: 838-842, 2017 Jul 15.
Article En | MEDLINE | ID: mdl-28284651

We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100µm in size and include PM10s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred.

4.
J Multidiscip Healthc ; 4: 73-83, 2011 Apr 06.
Article En | MEDLINE | ID: mdl-21544249

BACKGROUND: The effectiveness of malaria control programs is determined by an array of complex factors, including the acceptability and sustained use of preventative measures such as the bed net. A small-scale exploratory study was conducted in several locations in the Niger Delta region, Nigeria, to discover barriers against the use of bed nets, in the context of a current drive to scale up net use in Nigeria. METHODS: A qualitative approach with a convenience sample was used. One to one interviews with mostly male adult volunteers were undertaken which explored typical living and sleeping arrangements, and perceptions about and barriers against the use of the mosquito prevention bed net. RESULTS: Several key issues emerged from the qualitative data. Bed nets were not reported as widely used in this small sample. The reasons reported for lack of use included issues of convenience, especially net set up and dismantling; potential hazard and safety concerns; issues related to typical family composition and nature of accommodation; humid weather conditions; and perceptions of cost and effectiveness. Most barriers to net use concerned issues about everyday practical living and sleeping arrangements and perceptions about comfort. Interviewees identified were aware of malaria infection risks, but several also indicated certain beliefs that were barriers to net use. CONCLUSIONS: Successful control of malaria and scale up of insecticide-treated net coverage relies on community perceptions and practice. This small study has illuminated a number of important everyday life issues, which remain barriers to sustained net use, and has clarified further questions to be considered in net design and in future research studies. The study highlights the need for further research on the human concerns that contribute to sustained use of nets or, conversely, present significant barriers to their use.

5.
J Vasc Interv Neurol ; 4(2): 1-4, 2011 Jul.
Article En | MEDLINE | ID: mdl-22518263

BACKGROUND: Little information is available on how forces resulting from fluid flow interact with structural stability of carotid atherosclerotic plaque and how such interactions may impact on stroke prevention; investigation of the 3D structure of plaque could help in such studies. The aim of this study was to investigate whether confocal microscopy can be used to obtain 3D visualization of the structure of atherosclerotic carotid plaques. METHODS: Carotid plaque specimens were collected from routine end-arterectomy surgical operations. Both bright-field microscopy and Laser Scanning Confocal Microscopy (LSCM) were used to generate 3D image data-sets and visualizations of surgically removed carotid plaques. RESULTS: Evidence of carotid plaque vulnerability was demonstrated by reduced fibrous cap thickness and large lipid-necrotic core with evidence of cracking. CONCLUSION: The generation of 3D images of carotid plaques could help in: (i) investigating key features that affect plaque structural stability; (ii) comparing 3D microstructure of the plaque with clinical imaging assessment and blood flow investigations; and (iii) developing markers to identify patients requiring clinical intervention.

...