Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nat Chem ; 13(5): 465-471, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33723377

RESUMEN

Aprotic alkali metal-O2 batteries face two major obstacles to their chemistry occurring efficiently, the insulating nature of the formed alkali superoxides/peroxides and parasitic reactions that are caused by the highly reactive singlet oxygen (1O2). Redox mediators are recognized to be key for improving rechargeability. However, it is unclear how they affect 1O2 formation, which hinders strategies for their improvement. Here we clarify the mechanism of mediated peroxide and superoxide oxidation and thus explain how redox mediators either enhance or suppress 1O2 formation. We show that charging commences with peroxide oxidation to a superoxide intermediate and that redox potentials above ~3.5 V versus Li/Li+ drive 1O2 evolution from superoxide oxidation, while disproportionation always generates some 1O2. We find that 1O2 suppression requires oxidation to be faster than the generation of 1O2 from disproportionation. Oxidation rates decrease with growing driving force following Marcus inverted-region behaviour, establishing a region of maximum rate.

2.
Nat Mater ; 18(4): 301-302, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30894756

Asunto(s)
Oxígeno
3.
Nat Commun ; 10(1): 1380, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30914647

RESUMEN

Non-aqueous lithium-oxygen batteries cycle by forming lithium peroxide during discharge and oxidizing it during recharge. The significant problem of oxidizing the solid insulating lithium peroxide can greatly be facilitated by incorporating redox mediators that shuttle electron-holes between the porous substrate and lithium peroxide. Redox mediator stability is thus key for energy efficiency, reversibility, and cycle life. However, the gradual deactivation of redox mediators during repeated cycling has not conclusively been explained. Here, we show that organic redox mediators are predominantly decomposed by singlet oxygen that forms during cycling. Their reaction with superoxide, previously assumed to mainly trigger their degradation, peroxide, and dioxygen, is orders of magnitude slower in comparison. The reduced form of the mediator is markedly more reactive towards singlet oxygen than the oxidized form, from which we derive reaction mechanisms supported by density functional theory calculations. Redox mediators must thus be designed for stability against singlet oxygen.

4.
Angew Chem Int Ed Engl ; 58(20): 6535-6539, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-30884063

RESUMEN

Singlet oxygen (1 O2 ) causes a major fraction of the parasitic chemistry during the cycling of non-aqueous alkali metal-O2 batteries and also contributes to interfacial reactivity of transition-metal oxide intercalation compounds. We introduce DABCOnium, the mono alkylated form of 1,4-diazabicyclo[2.2.2]octane (DABCO), as an efficient 1 O2 quencher with an unusually high oxidative stability of ca. 4.2 V vs. Li/Li+ . Previous quenchers are strongly Lewis basic amines with too low oxidative stability. DABCOnium is an ionic liquid, non-volatile, highly soluble in the electrolyte, stable against superoxide and peroxide, and compatible with lithium metal. The electrochemical stability covers the required range for metal-O2 batteries and greatly reduces 1 O2 related parasitic chemistry as demonstrated for the Li-O2 cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...