Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 14(1): 226, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649121

RESUMEN

BACKGROUND: Articular cartilage (AC)'s main function is to resist to a stressful mechanical environment, and chondrocytes are responding to mechanical stress for the development and homeostasis of this tissue. However, current knowledge on processes involved in response to mechanical stimulation is still limited. These mechanisms are commonly investigated in engineered cartilage models where the chondrocytes are included in an exogeneous biomaterial different from their natural extracellular matrix. The aim of the present study is to better understand the impact of mechanical stimulation on mesenchymal stromal cells (MSCs)-derived chondrocytes generated in their own extracellular matrix. METHODS: A fluidic custom-made device was used for the mechanical stimulation of cartilage micropellets obtained from human MSCs by culture in a chondrogenic medium for 21 days. Six micropellets were positioned into the conical wells of the device chamber and stimulated with different signals of positive pressure (amplitude, frequency and duration). A camera was used to record the sinking of each micropellet into their cone, and micropellet deformation was analyzed using a finite element model. Micropellets were harvested at different time points after stimulation for RT-qPCR and histology analysis. RESULTS: Moderate micropellet deformation was observed during stimulation with square pressure signals as mean von Mises strains between 6.39 and 14.35% were estimated for amplitudes of 1.75-14 kPa superimposed on a base pressure of 50% of the amplitude. The compression, tension and shear observed during deformation did not alter micropellet microstructure as shown by histological staining. A rapid and transient increase in the expression of chondrocyte markers (SOX9, AGG and COL2B) was measured after a single 30-min stimulation with a square pressure signal of 3.5 kPa amplitude superimposed on a minimum pressure of 1.75 kPa, at 1 Hz. A small change of 1% of cyclical deformations when using a square pressure signal instead of a constant pressure signal induced a fold change of 2 to 3 of chondrogenic gene expression. Moreover, the expression of fibrocartilage (COL I) or hypertrophic cartilage (COL X, MMP13 and ADAMTS5) was not significantly regulated, except for COL X. CONCLUSIONS: Our data demonstrate that the dynamic deformation of cartilage micropellets by fluidic-based compression modulates the expression of chondrocyte genes responsible for the production of a cartilage-like extracellular matrix. This lays the foundations for further investigating the chondrocyte mechanobiology and the cartilage growth under mechanical stimulation.


Asunto(s)
Cartílago , Condrocitos , Humanos , Materiales Biocompatibles , Condrogénesis/genética , Expresión Génica
2.
J Biomed Mater Res A ; 111(7): 1067-1089, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36583681

RESUMEN

Articular cartilage (AC) is the thin tissue that covers the long bone ends in the joints and that ensures the transmission of forces between adjacent bones while allowing nearly frictionless movements between them. AC repair is a technologic and scientific challenge that has been addressed with numerous approaches. A major deadlock is the capacity to take in account its complex mechanical properties in repair strategies. In this review, we first describe the major mechanical behaviors of AC for the non-specialists. Then, we show how researchers have progressively identified specific mechanical parameters using mathematical models. There are still gaps in our understanding of some of the observations concerning AC biomechanical properties, particularly the differences in extracellular matrix stiffness measured at the microscale and at the millimetric scale. Nevertheless, for bioengineering applications, AC repair strategies must take into account what are commonly considered the main mechanical features of cartilage: its ability to withstand high stresses through three main behaviors (elasticity, poroelasticity and swelling). Finally, we emphasize that future studies need to investigate AC mechanical properties at different scales, particularly the gradient of mechanical properties around cells and across the cartilage depth, and the differences in mechanical properties at different scales. This multi-scale approach could greatly enhance the success of AC restorative approaches.


Asunto(s)
Cartílago Articular , Ingeniería de Tejidos , Fenómenos Biomecánicos , Matriz Extracelular , Elasticidad , Estrés Mecánico
3.
Biomacromolecules ; 22(9): 3873-3883, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34510908

RESUMEN

The stereolithography process is a powerful additive manufacturing technology to fabricate scaffolds for regenerative medicine. Nevertheless, the quest for versatile inks allowing one to produce scaffolds with controlled properties is still unsatisfied. In this original article, we tackle this bottleneck by synthesizing a panel of photoprocessable hybrid copolymers composed of gelatin-graft-poly(trimethylene carbonate)s (Gel-g-PTMCn). We demonstrated that by changing the length of PTMC blocks grafted from gelatin, it is possible to tailor the final properties of the photofabricated objects. We reported here on the synthesis of Gel-g-PTMCn with various lengths of PTMC blocks grafted from gelatin using hydroxy and amino side groups of the constitutive amino acids. Then, the characterization of the resulting hybrid copolymers was fully investigated by quantitative NMR spectroscopy before rendering them photosensitive by methacrylation of the PTMC terminal groups. Homogeneous composition of the photocrosslinked hybrid polymers was demonstrated by EDX spectroscopy and electronic microscopy. To unravel the individual contribution of the PTMC moiety on the hybrid copolymer behavior, water absorption, contact angle measurements, and degradation studies were undertaken. Interestingly, the photocrosslinked materials immersed in water were examined using tensile experiments and displayed a large panel of behavior from hydrogel to elastomer-like depending on the PTMC/gel ratio. Moreover, the absence of cytotoxicity was conducted following the ISO 10993 assay. As a proof of concept, 3D porous objects were successfully fabricated using stereolithography. Those results validate the great potential of this panel of inks for tissue engineering and regenerative medicine.


Asunto(s)
Estereolitografía , Ingeniería de Tejidos , Dioxanos , Gelatina , Polímeros , Andamios del Tejido
4.
J Biomech ; 67: 166-171, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29217092

RESUMEN

Modeling human-object interactions is a necessary step in the ergonomic assessment of products. Fingertip finite element models can help investigating these interactions, if they are built based on realistic geometrical data and material properties. The aim of this study was to investigate the fingertip geometry and its mechanical response under compression, and to identify the parameters of a hyperelastic material property associated to the fingertip soft tissues. Fingertip compression tests in an MRI device were performed on 5 subjects at either 2 or 4 N and at 15° or 50°. The MRI images allowed to document both the internal and external fingertip dimensions and to build 5 subject-specific finite element models. Simulations reproducing the fingertip compression tests were run to obtain the material property parameters of the soft tissues. Results indicated that two ellipses in the sagittal and longitudinal plane could describe the external fingertip geometry. The internal geometries indicated an averaged maximal thickness of soft tissues of 6.4 ±â€¯0.8 mm and a 4 ±â€¯1 mm height for the phalanx bone. The averaged deflections under loading went from 1.8 ±â€¯0.3 mm at 2 N, 50° to 3.1 ±â€¯0.2 mm at 4 N, 15°. Finally, the following set of parameters for a second order hyperelastic law to model the fingertip soft tissues was proposed: C01=0.59 ±â€¯0.09 kPa and C20 = 2.65 ±â€¯0.88 kPa. These data should facilitate further efforts on fingertip finite element modeling.


Asunto(s)
Dedos/diagnóstico por imagen , Análisis de Elementos Finitos , Imagen por Resonancia Magnética , Fenómenos Mecánicos , Adulto , Fenómenos Biomecánicos , Humanos , Masculino , Modelos Biológicos , Presión , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA