Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Res ; 252(Pt 2): 118970, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642642

RESUMEN

This study aimed to evaluate effective treatment strategies for laboratory waste with an initial pH of 1.0, containing Cr6+, Mn2+, Co2+, Fe3+, Ni2+, Cu2+, Zn2+, Sr2+, Hg2+, and Pb2+ ions, focusing on flocculation, precipitation, and adsorption techniques. The study utilized microparticles derived from Moringa oleifera seed husks (MS), cryogels of carboxymethyl cellulose (CMC), and hybrid cryogels combining CMC and MS (CMC-MS25 and CMC-MS50) as adsorbents. The optimal strategy involved raising the pH to 7 using NH4OH, leading to the partial precipitation of metal ions. The remaining supernatant was then passed through columns packed with the aforementioned adsorbents. Utilizing CMC-MS25 and CMC-MS50 adsorbents resulted in the simultaneous removal of over 90% of the targeted metal ions. The adsorption of Cu2+ ions onto the adsorbents was facilitated by electrostatic interactions between Cu2+ ions and carboxylate groups, as well as Cu-OH chelation, as confirmed by X-ray photoelectron spectroscopy. Under optimized conditions, the fixed-bed column adsorption capacity was determined as 88.2 mg g-1. The CMC-MS25 adsorbents proved reusable at least 5 times, with the recovered Cu2+ ions potentially suitable for other processes. The scalability and feasibility of producing these novel adsorbents suggest a promising, cost-effective solution for treating complex matrices and recovering high-value metals, as copper.


Asunto(s)
Carboximetilcelulosa de Sodio , Moringa oleifera , Semillas , Carboximetilcelulosa de Sodio/química , Moringa oleifera/química , Semillas/química , Adsorción , Contaminantes Químicos del Agua/química , Metales Pesados/química , Metales/química
2.
J Colloid Interface Sci ; 648: 604-615, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37315482

RESUMEN

HYPOTHESIS: The type and concentration of surfactants affect the rheological behavior of hydroxypropyl methylcellulose (HPMC) chains in hydrogels, influencing the microstructure and mechanical properties of HPMC cryogels. EXPERIMENTS: Hydrogels and cryogels containing HPMC, AOT (bis (2-ethylhexyl) sodium sulfosuccinate or dioctyl sulfosuccinate salt sodium, two C8 chains and sulfosuccinate head group), SDS (sodium dodecyl sulfate, one C12 chain and sulfate head group), and sodium sulfate (salt, no hydrophobic chain) at different concentrations were investigated using small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM), rheological measurements, and compressive tests. FINDINGS: SDS micelles bound to the HPMC chains building "bead necklaces", increasing considerably the storage modulus G' values of the hydrogels and the compressive modulus E values of the corresponding cryogels. The dangling SDS micelles promoted multiple junction points among the HPMC chains. AOT micelles and HPMC chains did not form "bead necklaces". Although AOT increased the G' values of the hydrogels, the resulting cryogels were softer than pure HPMC cryogels. The AOT micelles are probably embedded between HPMC chains. The AOT short double chains rendered softness and low friction to the cryogel cell walls. Therefore, this work demonstrated that the structure of the surfactant tail can tune the rheological behavior of HPMC hydrogels and hence the microstructure of the resulting cryogels.

3.
Polymers (Basel) ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37050372

RESUMEN

Caffeine (CAF) is a psychostimulant present in many beverages and with rapid bioabsorption. For this reason, matrices that effectuate the sustained release of a low amount of CAF would help reduce the intake frequency and side effects caused by high doses of this stimulant. Thus, in this study, CAF was loaded into magnetic gelatin/alginate (Gel/Alg/MNP) hydrogels at 18.5 mg/ghydrogel. The in vitro release of CAF was evaluated in the absence and presence of an external magnetic field (EMF) and Ca2+. In all cases, the presence of Ca2+ (0.002 M) retarded the release of CAF due to favorable interactions between them. Remarkably, the release of CAF from Gel/Alg/MNP in PBS/CaCl2 (0.002 M) at 37 °C under an EMF was more sustained due to synergic effects. In PBS/CaCl2 (0.002 M) and at 37 °C, the amounts of CAF released after 45 min from Gel/Alg and Gel/Alg/MNP/EMF were 8.3 ± 0.2 mg/ghydrogel and 6.1 ± 0.8 mg/ghydrogel, respectively. The concentration of CAF released from Gel/Alg and Gel/Alg/MNP hydrogels amounted to ~0.35 mM, thereby promoting an increase in cell viability for 48 h. Gel/Alg and Gel/Alg/MNP hydrogels can be applied as reservoirs to release CAF at suitable concentrations, thus forestalling possible side effects and improving the viability of SH-SY5Y cells.

4.
Biomed Mater ; 18(2)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36805541

RESUMEN

Bioactive peptides from natural resources with associated beneficial biological properties such as skin wound healing have drawn much attention. Polysaccharides with their biocompatibility, biodegradability, and ease of modification are suitable carriers for peptides delivery to the wound. In this study, a polysaccharide-peptide system was designed for potential wound healing applications. Xanthan hydrogels were modified with the yeast-derived peptide VW-9 with known biological properties via chemical conjugation using carbodiimide chemistry (XG-g-VW-9) or physically incorporation (XG-p-VW-9). Grafting VW-9 to the hydrogels increased the hydrogels' swelling degree and the release of the peptide from the hydrogels followed the Higuchi model indicating the peptide diffusion from the hydrogel matrix without hydrogel matrix dissolution. Both hydrogels were cytocompatible toward the tested fibroblast and macrophage cells. XG-p-VW-9 and XG-g-VW-9 reduce the level of tumor necrosis factor-alpha and interleukin-6 in cells activated with lipopolysaccharide more efficiently than free VW-9. Thus, VW-9-modified xanthan hydrogels may have the potential to be considered for skin wound healing.


Asunto(s)
Hidrogeles , Saccharomyces cerevisiae , Hidrogeles/química , Polisacáridos Bacterianos/química , Péptidos
5.
Dalton Trans ; 51(23): 9138-9143, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35642932

RESUMEN

Persistent luminescent materials are present in several recent studies on new applications and novel properties. In this work, we demonstrate, for the first time, the production of translucent flexible persistent composites based on Sr2MgSi2O7:Eu2+,Dy3+ (SMSO) into cellulose ether matrix film. The composite was successfully prepared through a new optimized route of co-precipitation and microwave-assisted annealing followed by (3-aminopropyl)triethoxysilane (APTES) coating and dispersion in hydroxypropyl methylcellulose (HPMC). The SMSO@APTES/HPMC films show persistent luminescence emission at 475 nm (blue) and high transmittance in the visible range. To understand the fine distribution of the nanoparticles in the matrix, we have investigated their structure and dispersion by using Synchrotron Radiation X-ray fluorescence mapping and Scanning Transmission X-ray Microscopy. This innovative composite could bring new perspectives for the class of persistent luminescence materials, enhancing technologies in progress throwing light on new applications never perceived.


Asunto(s)
Luminiscencia , Nanopartículas , Celulosa/química , Éter , Nanopartículas/química
6.
Carbohydr Polym ; 292: 119725, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35725193

RESUMEN

In this work, chitosan chains were crosslinked with different contents of vanillin (Van), characterized and loaded with curcumin (CUR), a hydrophobic drug. Sodium dodecyl sulfate (SDS), Tween 20® (T20) and ß-cyclodextrin (ßCD) were used as curcumin carriers. Films prepared with Van 20 % yielded gel content of 70 %, swelling degree of ~23 gwater/g, bound water and capillary water, as revealed by Time-Domain Nuclear Magnetic Resonance measurements. Films prepared with higher Van contents showed small swelling degree (< 1.6 gwater/g) and hydrophobicity, making them inadequate for drug loading. UV-Vis and fluorescence spectroscopic studies indicated that Van 20 % combined with SDS and SDS/ßCD presented the highest CUR uptake (~3.0 mg/g), favored by electrostatic interactions and hydrophobic interactions. CHI and Van 20 % films did not present any cytotoxicity in human neuroblastoma SH-SY5Y cells. At pH 1.0 the films were completely soluble, pointing to their potential application as gastric delivery systems for hydrophobic drugs. Chemical compounds studied in the manuscript: Chitosan, vanillin, curcumin, ß-cyclodextrin, sodium dodecyl sulfate, polyethylene glycol sorbitan monolaurate.


Asunto(s)
Quitosano , Curcumina , Neuroblastoma , beta-Ciclodextrinas , Benzaldehídos , Quitosano/química , Curcumina/química , Curcumina/farmacología , Portadores de Fármacos/química , Liberación de Fármacos , Humanos , Dodecil Sulfato de Sodio , Agua/química , beta-Ciclodextrinas/química
7.
Stem Cell Rev Rep ; 18(4): 1337-1354, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35325357

RESUMEN

Neurodevelopmental processes of pluripotent cells, such as proliferation and differentiation, are influenced by external natural forces. Despite the presence of biogenic magnetite nanoparticles in the central nervous system and constant exposure to the Earth's magnetic fields and other sources, there is scant knowledge regarding the role of electromagnetic stimuli in neurogenesis. Moreover, emerging applications of electrical and magnetic stimulation to treat neurological disorders emphasize the relevance of understanding the impact and mechanisms behind these stimuli. Here, the effects of magnetic nanoparticles (MNPs) in polymeric coatings and the static external magnetic field (EMF) were investigated on neural induction of murine embryonic stem cells (mESCs) and human induced pluripotent stem cells (hiPSCs). The results show that the presence of 0.5% MNPs in collagen-based coatings facilitates the migration and neuronal maturation of mESCs and hiPSCs in vitro. Furthermore, the application of 0.4 Tesla EMF perpendicularly to the cell culture plane, discernibly stimulates proliferation and guide fate decisions of the pluripotent stem cells, depending on the origin of stem cells and their developmental stage. Mechanistic analysis reveals that modulation of ionic homeostasis and the expression of proteins involved in cytostructural, liposomal and cell cycle checkpoint functions provide a principal underpinning for the impact of electromagnetic stimuli on neural lineage specification and proliferation. These findings not only explore the potential of the magnetic stimuli as neural differentiation and function modulator but also highlight the risks that immoderate magnetic stimulation may affect more susceptible neurons, such as dopaminergic neurons.


Asunto(s)
Células Madre Pluripotentes Inducidas , Nanopartículas de Magnetita , Células Madre Pluripotentes , Animales , Neuronas Dopaminérgicas , Humanos , Campos Magnéticos , Ratones
8.
Int J Biol Macromol ; 204: 345-355, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35149093

RESUMEN

Alginate (Alg) beads are low-cost adsorbents used for wastewater remediation. In this work, alginate (Alg) and alginate/xanthan (Alg/XG) blend beads were synthesized by gelation method into calcium chloride and freeze-dried to improve the porosity. Their adsorption efficiency was tested for methylene blue (MB) dye in batch, recirculating and column adsorption systems. The blend beads were characterized using by SEM, FTIR-ATR and X-ray microcomputer tomography (Micro-CT) analyzes. Freeze-dried Alg and Alg/XG beads presented porosity of 46 ± 5% and 77 ± 3%, respectively. Adsorption isotherms of MB on freeze-dried Alg/XG beads indicated better adsorption capacity in comparison to the air-dried ones. Adsorption kinetics and breakthrough curves based on recirculating and vertical column adsorption processes of MB on freeze dried Alg/XG and air-dried Alg/XG beads indicated higher efficiency for the vertical column system packed with freeze dried Alg/XG beads. The removal efficiency of 91% MB by the freeze-dried Alg/XG beads in vertical column remained even after four consecutive adsorption-desorption cycles, disclosing these beads as potential systems for the wastewater treatment.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Alginatos , Concentración de Iones de Hidrógeno , Cinética , Polisacáridos Bacterianos
9.
Gels ; 7(3)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34449619

RESUMEN

The mechanical and thermal properties of cryogels depend on their microstructure. In this study, the microstructure of hydroxypropyl methylcellulose (HPMC) cryogels was modified by the addition of ionic (bis (2-ethylhexyl) sodium sulfosuccinate, AOT) and non-ionic (Kolliphor® EL) surfactants to the precursor hydrogels (30 g/L). The surfactant concentrations varied from 0.2 mmol/L to 3.0 mmol/L. All of the hydrogels presented viscous behavior (G″ > G'). Hydrogels containing AOT (c > 2.0 mmol/L) led to cryogels with the lowest compressive modulus (13 ± 1 kPa), the highest specific surface area (2.31 m2/g), the lowest thermal conductivity (0.030 W/(m·°C)), and less hygroscopic walls. The addition of Kolliphor® EL to the hydrogels yielded the stiffest cryogels (320 ± 32 kPa) with the lowest specific surface area (1.11 m2/g) and the highest thermal conductivity (0.055 W/(m·°C)). Density functional theory (DFT) calculations indicated an interaction energy of -31.8 kcal/mol due to the interaction between the AOT sulfonate group and the HPMC hydroxyl group and the hydrogen bond between the AOT carbonyl group and the HPMC hydroxyl group. The interaction energy between the HPMC hydroxyl group and the Kolliphor® EL hydroxyl group was calculated as -7.91 kcal/mol. A model was proposed to describe the effects of AOT or Kolliphor® EL on the microstructures and the mechanical/thermal properties of HPMC cryogels.

10.
Carbohydr Polym ; 248: 116765, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32919561

RESUMEN

Tryptophan (Trp) decorated hydroxypropyl methylcellulose (HPMC) cryogels were prepared by a one-step reaction with citric acid. The increase of Trp content in the 3D network from 0 to 2.18 wt% increased the apparent density from 0.0267 g.cm-3 to 0.0381 g.cm-3 and the compression modulus from 94 kPa to 201 kPa, due to hydrophobic interactions between Trp molecules. The increase of Trp content in HPMC-Trp hydrogels increased the amount of non-freezing water, estimated from differential scanning calorimetry, and the amount of freezing water, which was determined by time-domain nuclear magnetic resonance. The adsorption capacity of methylene blue (MB) and rhodamine B (RB) on HPMC-Trp hydrogels increased with Trp content and the amount of freezing water. HPMC-Trp hydrogels could be recycled 6 times keeping the original adsorptive capacity. The diffusional constants of MB and RB tended to increase with Trp content. RB adsorbed on HPMC-Trp hydrogels presented a bathochromic shift of fluorescence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA