Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 186: 108575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38507935

RESUMEN

Although toxicology uses animal models to represent real-world human health scenarios, a critical translational gap between laboratory-based studies and epidemiology remains. In this study, we aimed to understand the toxicoepigenetic effects on DNA methylation after developmental exposure to two common toxicants, the phthalate di(2-ethylhexyl) phthalate (DEHP) and the metal lead (Pb), using a translational paradigm that selected candidate genes from a mouse study and assessed them in four human birth cohorts. Data from mouse offspring developmentally exposed to DEHP, Pb, or control were used to identify genes with sex-specific sites with differential DNA methylation at postnatal day 21. Associations of human infant DNA methylation in homologous mouse genes with prenatal DEHP or Pb were examined with a meta-analysis. Differential methylation was observed on 6 cytosines (adjusted-p < 0.05) and 90 regions (adjusted-p < 0.001). This translational approach offers a unique method that can detect conserved epigenetic differences that are developmentally susceptible to environmental toxicants.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Plomo , Ácidos Ftálicos , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Humanos , Lactante , Masculino , Ratones , Embarazo , Dietilhexil Ftalato/toxicidad , Metilación de ADN/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Epigénesis Genética/efectos de los fármacos , Plomo/toxicidad , Ácidos Ftálicos/toxicidad , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
2.
Environ Mol Mutagen ; 65(1-2): 55-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523457

RESUMEN

Prostate cancer is the leading incident cancer among men in the United States. Firefighters are diagnosed with this disease at a rate 1.21 times higher than the average population. This increased risk may result from occupational exposures to many toxicants, including per- and polyfluoroalkyl substances (PFAS). This study assessed the association between firefighting as an occupation in general or PFAS serum levels, with DNA methylation. Only genomic regions previously linked to prostate cancer risk were selected for analysis: GSTP1, Alu repetitive elements, and the 8q24 chromosomal region. There were 444 male firefighters included in this study, with some analyses being conducted on fewer participants due to missingness. Statistical models were used to test associations between exposures and DNA methylation at CpG sites in the selected genomic regions. Exposure variables included proxies of cumulative firefighting exposures (incumbent versus academy status and years of firefighting experience) and biomarkers of PFAS exposures (serum concentrations of 9 PFAS). Proxies of cumulative exposures were associated with DNA methylation at 15 CpG sites and one region located within FAM83A (q-value <0.1). SbPFOA was associated with 19 CpG sites (q < 0.1), but due to low detection rates, this PFAS was modeled as detected versus not detected in serum. Overall, there is evidence that firefighting experience is associated with differential DNA methylation in prostate cancer risk loci, but this study did not find evidence that these differences are due to PFAS exposures specifically.


Asunto(s)
Fluorocarburos , Exposición Profesional , Neoplasias de la Próstata , Humanos , Masculino , Metilación de ADN/genética , Exposición Profesional/efectos adversos , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/genética , ADN , Fluorocarburos/toxicidad , Fluorocarburos/análisis , Proteínas de Neoplasias
3.
Front Cell Dev Biol ; 11: 1198148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384255

RESUMEN

Introduction: The developing epigenome changes rapidly, potentially making it more sensitive to toxicant exposures. DNA modifications, including methylation and hydroxymethylation, are important parts of the epigenome that may be affected by environmental exposures. However, most studies do not differentiate between these two DNA modifications, possibly masking significant effects. Methods: To investigate the relationship between DNA hydroxymethylation and developmental exposure to common contaminants, a collaborative, NIEHS-sponsored consortium, TaRGET II, initiated longitudinal mouse studies of developmental exposure to human-relevant levels of the phthalate plasticizer di(2-ethylhexyl) phthalate (DEHP), and the metal lead (Pb). Exposures to 25 mg DEHP/kg of food (approximately 5 mg DEHP/kg body weight) or 32 ppm Pb-acetate in drinking water were administered to nulliparous adult female mice. Exposure began 2 weeks before breeding and continued throughout pregnancy and lactation, until offspring were 21 days old. At 5 months, perinatally exposed offspring blood and cortex tissue were collected, for a total of 25 male mice and 17 female mice (n = 5-7 per tissue and exposure). DNA was extracted and hydroxymethylation was measured using hydroxymethylated DNA immunoprecipitation sequencing (hMeDIP-seq). Differential peak and pathway analysis was conducted comparing across exposure groups, tissue types, and animal sex, using an FDR cutoff of 0.15. Results: DEHP-exposed females had two genomic regions with lower hydroxymethylation in blood and no differences in cortex hydroxymethylation. For DEHP-exposed males, ten regions in blood (six higher and four lower) and 246 regions (242 higher and four lower) and four pathways in cortex were identified. Pb-exposed females had no statistically significant differences in blood or cortex hydroxymethylation compared to controls. Pb-exposed males, however, had 385 regions (all higher) and six pathways altered in cortex, but no differential hydroxymethylation was identified in blood. Discussion: Overall, perinatal exposure to human-relevant levels of two common toxicants showed differences in adult DNA hydroxymethylation that was specific to sex, exposure type, and tissue, but male cortex was most susceptible to hydroxymethylation differences by exposure. Future assessments should focus on understanding if these findings indicate potential biomarkers of exposure or are related to functional long-term health effects.

4.
Exposome ; 3(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333730

RESUMEN

The accumulation of every day exposures can impact health across the life course, but our understanding of such exposures is impeded by our ability to delineate the relationship between an individual's early life exposome and later life health effects. Measuring the exposome is challenging. Exposure assessed at a given time point captures a snapshot of the exposome but does not represent the full spectrum of exposures across the life course. In addition, the assessment of early life exposures and their effects is often further challenged by lack of relevant samples and the time gap between exposures and related health outcomes in later life. Epigenetics, specifically DNA methylation, has the potential to overcome these barriers as environmental epigenetic perturbances can be retained through time. In this review, we describe how DNA methylation can be framed in the world of the exposome. We offer three compelling examples of common environmental exposures, including cigarette smoke, the endocrine active compound bisphenol A (BPA), and the metal lead (Pb), to illustrate the application of DNA methylation as a proxy to measure the exposome. We discuss areas for future explorations and current limitations of this approach. Epigenetic profiling is a promising and rapidly developing tool and field of study, offering us a unique and powerful way to assess the early life exposome and its effects across different life stages.

5.
Curr Protoc ; 3(3): e698, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36912610

RESUMEN

Although noteworthy progress has been made in developing alternatives to animal testing, nonhuman primates still play a critical role in advancing biomedical research and will likely do so for many years. Core similarities between monkeys and humans in genetics, physiology, reproduction, development, and behavior make them excellent models for translational studies relevant to human health. This unit is designed to specifically address the role of nonhuman primates in neurotoxicology research and outlines the specialized assessments that can be used to measure exposure-related changes at the structural, chemical, cellular, molecular, and functional levels. © 2023 Wiley Periodicals LLC.


Asunto(s)
Investigación Biomédica , Primates , Animales , Humanos , Haplorrinos , Proyectos de Investigación , Reproducción
6.
Clin Epigenetics ; 15(1): 49, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964604

RESUMEN

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are chemicals that are resistant to degradation and ubiquitous in our environments. PFAS may impact the developing epigenome, but current human evidence is limited to assessments of total DNA methylation. We assessed associations between first trimester PFAS exposures with newborn DNA methylation, including 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC). DNA methylation mediation of associations between PFAS and birth outcomes were explored in the Michigan Mother Infant Pairs cohort. Nine PFAS were measured in maternal first trimester blood. Seven were highly detected and included for analysis: PFHxS, PFOA, PFOS, PFNA, PFDA, PFUnDA, and MeFOSAA. Bisulfite-converted cord blood DNA (n = 141) and oxidative-bisulfite-converted cord blood (n = 70) were assayed on Illumina MethylationEPIC BeadChips to measure total DNA methylation (5-mC + 5-hmC) and 5-mC/5-hmC. Correcting for multiple comparisons, beta regressions were used to assess associations between levels of PFAS and total methylation, 5-mC, or 5-hmC. Nonlinear mediation analyses were used to assess the epigenetic meditation effect between PFAS and birth outcomes. RESULTS: PFAS was significantly associated with total methylation (q < 0.05: PFHxS-12 sites; PFOS-19 sites; PFOA-2 sites; PFNA-3 sites; PFDA-4 sites). In 72 female infants and 69 male infants, there were sex-specific associations between five PFAS and DNA methylation. 5-mC and 5-hmC were each significantly associated with thousands of sites for PFHxS, PFOS, PFNA, PFDA, PFUnDA, and MeFOSAA (q < 0.05). Clusters of 5-mC and 5-hmC sites were significant mediators between PFNA and PFUnDA and decreased gestational age (q < 0.05). CONCLUSIONS: This study demonstrates the mediation role of specific types of DNA methylation on the relationship between PFAS exposure and birth outcomes. These results suggest that 5-mC and 5-hmC may be more sensitive to the developmental impacts of PFAS than total DNA methylation.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Embarazo , Recién Nacido , Humanos , Masculino , Lactante , Femenino , Madres , Metilación de ADN , Michigan
8.
Environ Health Perspect ; 130(9): 97003, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36102641

RESUMEN

BACKGROUND: The excitotoxic molecule, domoic acid (DA), is a marine algal toxin known to induce overt hippocampal neurotoxicity. Recent experimental and epidemiological studies suggest adverse neurological effects at exposure levels near the current regulatory limit (20 ppm, ∼0.075-0.1mg/kg). At these levels, cognitive effects occur in the absence of acute symptoms or evidence of neuronal death. OBJECTIVES: This study aimed to identify adverse effects on the nervous system from prolonged, dietary DA exposure in adult, female Macaca fascicularis monkeys. METHODS: Monkeys were orally exposed to 0, 0.075, and 0.15mg/kg per day for an average of 14 months. Clinical blood counts, chemistry, and cytokine levels were analyzed in the blood. In-life magnetic resonance (MR) imaging assessed volumetric and tractography differences in and between the hippocampus and thalamus. Histology of neurons and glia in the fornix, fimbria, internal capsule, thalamus, and hippocampus was evaluated. Hippocampal RNA sequencing was used to identify differentially expressed genes. Enrichment of gene networks for neuronal health, excitotoxicity, inflammation/glia, and myelin were assessed with Gene Set Enrichment Analysis. RESULTS: Clinical blood counts, chemistry, and cytokine levels were not altered with DA exposure in nonhuman primates. Transcriptome analysis of the hippocampus yielded 748 differentially expressed genes (fold change≥1.5; p≤0.05), reflecting differences in a broad molecular profile of intermediate early genes (e.g., FOS, EGR) and genes related to myelin networks in DA animals. Between exposed and control animals, MR imaging showed comparable connectivity of the hippocampus and thalamus and histology showed no evidence of hypomyelination. Histological examination of the thalamus showed a larger microglia soma size and an extension of cell processes, but suggestions of a GFAP+astrocyte response showed no indication of astrocyte hypertrophy. DISCUSSION: In the absence of overt hippocampal excitotoxicity, chronic exposure of Macaca fascicularis monkeys to environmentally relevant levels of DA suggested a subtle shift in the molecular profile of the hippocampus and the microglia phenotype in the thalamus that was possibly reflective of an adaptive response due to prolonged DA exposure. https://doi.org/10.1289/EHP10923.


Asunto(s)
Ácido Kaínico , Síndromes de Neurotoxicidad , Animales , Citocinas , Femenino , Ácido Kaínico/análogos & derivados , Ácido Kaínico/toxicidad , Macaca fascicularis , Toxinas Marinas/toxicidad
9.
Front Genet ; 13: 793278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432478

RESUMEN

Phthalates are a diverse group of chemicals used in consumer products. Because they are so widespread, exposure to these compounds is nearly unavoidable. Recently, growing scientific consensus has suggested that phthalates produce health effects in developing infants and children. These effects may be mediated through mechanisms related to the epigenome, the constellation of mitotically heritable chemical marks and small compounds that guide transcription and translation. The present study examined the relationship between prenatal, first-trimester exposure of seven phthalates and epigenetics in two pregnancy cohorts (n = 262) to investigate sex-specific alterations in infant blood DNA methylation at birth (cord blood or neonatal blood spots). Prenatal exposure to several phthalates was suggestive of association with altered DNA methylation at 4 loci in males (all related to ΣDEHP) and 4 loci in females (1 related to ΣDiNP; 2 related to BBzP; and 1 related to MCPP) at a cutoff of q < 0.2. Additionally, a subset of dyads (n = 79) was used to interrogate the relationships between two compounds increasingly used as substitutions for common phthalates (ΣDINCH and ΣDEHTP) and cord blood DNA methylation. ΣDINCH, but not ΣDEHTP, was suggestive of association with DNA methylation (q < 0.2). Together, these results demonstrate that prenatal exposure to both classically used phthalate metabolites and their newer alternatives is associated with sex-specific infant DNA methylation. Research and regulatory actions regarding this chemical class should consider the developmental health effects of these compounds and aim to avoid regrettable substitution scenarios in the present and future.

10.
Pharmacol Ther ; 227: 107865, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33930455

RESUMEN

Domoic acid (DA), the causative agent for the human syndrome Amnesic Shellfish Poisoning (ASP), is a potent, naturally occurring neurotoxin produced by common marine algae. DA accumulates in seafood, and humans and wildlife alike can subsequently be exposed when consuming DA-contaminated shellfish or finfish. While strong regulatory limits protect people from the acute effects associated with ASP, DA is an increasingly significant public health concern, particularly for coastal dwelling populations, and there is a growing body of evidence suggesting that there are significant health consequences following repeated exposures to levels of the toxin below current safety guidelines. However, gaps in scientific knowledge make it difficult to precisely determine the risks of contemporary low-level exposure scenarios. The present review characterizes the toxicokinetics and neurotoxicology of DA, discussing results from clinical and preclinical studies after both adult and developmental DA exposure. The review also highlights crucial areas for future DA research and makes the case that DA safety limits need to be reassessed to best protect public health from deleterious effects of this widespread marine toxin.


Asunto(s)
Exposición a Riesgos Ambientales , Ácido Kaínico/análogos & derivados , Salud Pública , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Humanos , Ácido Kaínico/efectos adversos , Medición de Riesgo
11.
Toxicol Appl Pharmacol ; 398: 115027, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32360744

RESUMEN

Domoic acid (DA) is a marine algal toxin that causes acute and chronic neurotoxicity in animals and humans. Prenatal exposure to DA has been associated with neuronal damage and cognitive and behavioral deficits in juvenile California sea lions, cynomolgus monkeys and rodents. Yet, the toxicokinetics (TK) of DA during pregnancy and the maternal-fetal disposition of DA have not been fully elucidated. In this study, we investigated the TK before, during, and after pregnancy and the maternal-fetal disposition of DA in 22 cynomolgus monkeys following daily oral doses of 0.075 or 0.15 mg/kg/day of DA. The AUC0-τ of DA was not changed while the renal clearance of DA was increased by 30-90% during and after pregnancy when compared to the pre-pregnancy values. DA was detected in the infant plasma and in the amniotic fluid at delivery. The infant plasma concentrations correlated positively with both the maternal plasma and the amniotic fluid concentrations. The paired infant-to-maternal plasma DA concentration ratios ranged from 0.3 to 0.6 and increased as a function of time which suggests placental efflux and longer apparent fetal half-life than the maternal half-life. The paired amniotic fluid-to-infant plasma DA concentration ratios ranged from 4.5 to 7.5 which indicates significant accumulation of DA in the amniotic fluid. A maternal-fetal TK model was developed to explore the processes that give the observed maternal-fetal disposition of DA. The final model suggests that placental transport and recirculation of DA between the fetus and amniotic fluid are major determining factors of the maternal-fetal TK of DA.


Asunto(s)
Ácido Kaínico/análogos & derivados , Intercambio Materno-Fetal/fisiología , Primates/metabolismo , Líquido Amniótico/metabolismo , Animales , Método Doble Ciego , Femenino , Feto/metabolismo , Ácido Kaínico/metabolismo , Macaca fascicularis/metabolismo , Placenta/metabolismo , Embarazo
13.
Neurotoxicology ; 72: 114-124, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30826346

RESUMEN

Domoic acid (DA) is an excitatory neurotoxin produced by marine algae and responsible for Amnesiac Shellfish Poisoning in humans. Current regulatory limits (˜0.075-0.1 mg/kg/day) protect against acute toxicity, but recent studies suggest that the chronic consumption of DA below the regulatory limit may produce subtle neurotoxicity in adults, including decrements in memory. As DA-algal blooms are increasing in both severity and frequency, we sought to better understand the effects of chronic DA exposure on reproductive and neurobehavioral endpoints in a preclinical nonhuman primate model. To this end, we initiated a long-term study using adult, female Macaca fascicularis monkeys exposed to daily, oral doses of 0.075 or 0.15 mg/kg of DA for a range of 321-381, and 346-554 days, respectively. This time period included a pre-pregnancy, pregnancy, and postpartum period. Throughout these times, trained data collectors observed intentional tremors in some exposed animals during biweekly clinical examinations. The present study explores the basis of this neurobehavioral finding with in vivo imaging techniques, including diffusion tensor magnetic resonance imaging and spectroscopy. Diffusion tensor analyses revealed that, while DA exposed macaques did not significantly differ from controls, increases in DA-related tremors were negatively correlated with fractional anisotropy, a measure of structural integrity, in the internal capsule, fornix, pons, and corpus callosum. Brain concentrations of lactate, a neurochemical closely linked with astrocytes, were also weakly, but positively associated with tremors. These findings are the first documented results suggesting that chronic oral exposure to DA at concentrations near the current human regulatory limit are related to structural and chemical changes in the adult primate brain.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/patología , Ácido Kaínico/análogos & derivados , Toxinas Marinas/toxicidad , Neurotoxinas/toxicidad , Animales , Imagen de Difusión Tensora , Femenino , Ácido Kaínico/administración & dosificación , Ácido Kaínico/toxicidad , Macaca fascicularis , Toxinas Marinas/administración & dosificación , Neurotoxinas/administración & dosificación , Periodo Posparto , Embarazo , Temblor/inducido químicamente
14.
Neurotoxicol Teratol ; 73: 1-8, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30690118

RESUMEN

Domoic Acid (DA) is a naturally-occurring marine neurotoxin that is increasingly recognized as an important public health issue. Prenatal DA exposure occurs through the maternal consumption of contaminated shellfish/finfish. To better understand the fetal risks associated with DA, we initiated a longitudinal, preclinical study focused on the reproductive and developmental effects of chronic, low-dose oral DA exposure. To this end, 32 adult female Macaca fascicularis monkeys were orally dosed with 0, 0.075 or 0.15 mg/kg/day DA on a daily basis prior to breeding and throughout breeding and pregnancy. The doses included the proposed human Tolerable Daily Intake (TDI) (0.075 mg/kg/day) for DA. Adult females were bred to nonexposed males. To evaluate development during early infancy, offspring were administered a Neonatal Assessment modeled after the human Neonatal Behavior Assessment Scale and a series of Visual Recognition Memory problems using the novelty paradigm. Results indicated that prenatal DA exposure did not impact early survival reflexes or responsivity to the environment. Findings from the recognition memory assessment, given between 1 and 2 months of age, showed that exposed and control infants demonstrated robust novelty scores when test problems were relatively easy to solve. Performance was not diminished by the introduction of delay periods. However, when more difficult recognition problems were introduced, the looking behavior of the 0.15 mg/kg DA group was random and infants failed to show differential visual attention to novel test stimuli. This finding suggests subtle but significant impairment in recognition memory and demonstrates that chronic fetal exposure to DA may impact developing cognitive processes.


Asunto(s)
Animales Recién Nacidos/psicología , Conducta Animal/efectos de los fármacos , Ácido Kaínico/análogos & derivados , Toxinas Marinas/toxicidad , Memoria/efectos de los fármacos , Neurotoxinas/toxicidad , Efectos Tardíos de la Exposición Prenatal/etiología , Animales , Relación Dosis-Respuesta a Droga , Femenino , Ácido Kaínico/sangre , Ácido Kaínico/toxicidad , Macaca fascicularis , Masculino , Toxinas Marinas/sangre , Neurotoxinas/sangre , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Efectos Tardíos de la Exposición Prenatal/psicología
15.
Neurotoxicol Teratol ; 72: 10-21, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30615984

RESUMEN

Domoic Acid (DA) is a naturally-occurring excitotoxin, produced by marine algae, which can bioaccumulate in shellfish and finfish. The consumption of seafood contaminated with DA is associated with gastrointestinal illness that, in the case of high DA exposure, can evolve into a spectrum of responses ranging from agitation to hallucinations, memory loss, seizures and coma. Because algal blooms that produce DA are becoming more widespread and very little is known about the dangers of chronic, low-dose exposure, we initiated a preclinical study focused on the reproductive and developmental effects of DA in a nonhuman primate model. To this end, 32 adult female Macaca fascicularis monkeys were orally exposed to 0, 0.075 or 0.15 mg/kg/day DA on a daily basis, prior to and during pregnancy. Females were bred to non-exposed males and infants were evaluated at birth. Results from this study provided no evidence of changes in DA plasma concentrations with chronic exposure. DA exposure was not associated with reproductive toxicity or adverse changes in the physical characteristics of newborns. However, in an unanticipated finding, our clinical observations revealed the presence of subtle neurological effects in the form of intentional tremors in the exposed adult females. While females in both dose groups displayed increased tremoring, the effect was dose-dependent and observed at a higher rate in females exposed to 0.15 mg/kg/day. These results demonstrate that chronic, low-level exposure to DA is associated with injury to the adult CNS and suggest that current regulatory guidelines designed to protect human health may not be adequate for high-frequency shellfish consumers.


Asunto(s)
Ácido Kaínico/análogos & derivados , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Administración Oral , Animales , Animales Recién Nacidos , Relación Dosis-Respuesta a Droga , Femenino , Ácido Kaínico/administración & dosificación , Ácido Kaínico/sangre , Ácido Kaínico/toxicidad , Macaca fascicularis , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Contaminantes Químicos del Agua/administración & dosificación , Contaminantes Químicos del Agua/sangre
16.
ACS Omega ; 3(9): 12079-12088, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-30320288

RESUMEN

Domoic acid (DA) is a marine neurotoxin produced by several species of Pseudo-nitzschia. DA causes severe neurological toxicity in humans and animals. To address the current analytical need to quantify low levels of DA in human and animal body fluids, a sensitive and selective high performance liquid chromatography-tandem mass spectrometry method was developed to measure DA in plasma and urine. This method was fully validated to accurately and precisely quantify DA between 0.31 and 16 ng/mL in plasma and between 7.8 and 1000 ng/mL in urine. Our group introduced the use of a novel internal standard, tetrahydrodomoic acid to control for matrix effects and other sources of variability. This validated method will be useful to assess DA concentrations in biological samples of human or animal origin after suspected DA exposure from contaminated food. It will also be applicable to sentinel programs and research studies to analyze body fluids with low levels of DA.

17.
Pharmacol Ther ; 182: 133-151, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28847562

RESUMEN

The broad-based legalization of cannabis use has created a strong need to understand its impact on human health and behavior. The risks that may be associated with cannabis use, particularly for sensitive subgroups such as pregnant women, are difficult to define because of a paucity of dose-response data and the recent increase in cannabis potency. Although there is a large body of evidence detailing the mode of action of Δ9-tetrahydrocannabinol (THC) in adults, little work has focused on understanding how cannabis use during pregnancy may impact the development of the fetal nervous system and whether additional plant-derived cannabinoids might participate. This manuscript presents an overview of the historical and contemporary literature focused on the mode of action of THC in the developing brain, comparative pharmacokinetics in both pregnant and nonpregnant model systems and neurodevelopmental outcomes in exposed offspring. Despite growing public health significance, pharmacokinetic studies of THC have focused on nonpregnant adult subjects and there are few published reports on disposition parameters during pregnancy. Data from preclinical species show that THC readily crosses the placenta although fetal exposures appear lower than maternal exposures. The neurodevelopmental data in humans and animals suggest that prenatal exposure to THC may lead to subtle, persistent changes in targeted aspects of higher-level cognition and psychological well-being. There is an urgent need for well-controlled studies in humans and preclinical models on THC as a developmental neurotoxicant. Until more information is available, pregnant women should not assume that using cannabis during pregnancy is safe.


Asunto(s)
Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Dronabinol/efectos adversos , Dronabinol/farmacocinética , Uso de la Marihuana/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Encéfalo/crecimiento & desarrollo , Femenino , Humanos , Modelos Neurológicos , Embarazo
18.
Drug Metab Dispos ; 46(2): 155-165, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29150543

RESUMEN

Domoic acid (DA), a neurotoxin, is produced by marine algae and has caused toxications worldwide in animals and humans. However, the toxicokinetics of DA have not been fully evaluated, and information is missing on the disposition of DA following oral exposures at doses that are considered safe for human consumption. In this study, toxicokinetics of DA were investigated in cynomolgus monkeys following single doses of 5 µg/kg DA intravenously, 0.075 mg/kg DA orally, and 0.15 mg/kg DA orally. After intravenous dosing, DA had a systemic clearance of 124 ± 71 (ml/h)/kg, volume of distribution at steady state of 131 ± 71 ml/kg and elimination half-life of 1.2 ± 1.1 hours. However, following oral dosing, the average terminal half-life of DA was 11.3 ± 2.4 hours, indicating that DA disposition follows flip-flop kinetics with slow, rate-limiting absorption. The absorption of DA was low after oral dosing with absolute bioavailability of 6% ± 4%. The renal clearance of DA was variable [21-152 (ml/h)/kg] with 42% ± 11% of the intravenous DA dose recovered in urine. A physiologically based pharmacokinetic model was developed for DA in monkeys and humans that replicated the flip-flop kinetics observed after oral administration and allowed simulation of urinary excretion and brain and kidney distribution of DA following intravenous and oral dosing. This study is the first to characterize DA disposition at exposure levels close to the current estimated tolerable daily intake and to mechanistically model DA disposition in a model species, providing important information of the toxicokinetics of DA for human safety assessment.


Asunto(s)
Ácido Kaínico/análogos & derivados , Administración Oral , Adolescente , Adulto , Anciano , Animales , Disponibilidad Biológica , Femenino , Semivida , Humanos , Inyecciones Intravenosas/métodos , Ácido Kaínico/farmacocinética , Cinética , Macaca fascicularis , Masculino , Persona de Mediana Edad , Mariscos , Distribución Tisular , Toxicocinética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...